scholarly journals Genome-wide investigation and transcriptional analysis of cytosine-5 DNA methyltransferase and DNA demethylase gene families in tea plant (Camellia sinensis) under abiotic stress and withering processing

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8432 ◽  
Author(s):  
Chen Zhu ◽  
Shuting Zhang ◽  
Chengzhe Zhou ◽  
Lan Chen ◽  
Haifeng Fu ◽  
...  

DNA methylation is a highly conserved epigenetic modification involved in many biological processes, including growth and development, stress response, and secondary metabolism. In the plant kingdom, cytosine-5 DNA methyltransferase (C5-MTase) and DNA demethylase (dMTase) genes have been identified in some plant species. However, to the best of our knowledge, no investigator has focused on the identification and analysis of C5-MTase and dMTase genes in tea plants (Camellia sinensis) based on genome-wide levels. In this study, eight CsC5-MTases and four dMTases were identified in tea plants. These CsC5-MTase genes were divided into four subfamilies, including CsMET, CsCMT, CsDRM and CsDNMT2. The CsdMTase genes can be classified into CsROS, CsDME and CsDML. Based on conserved domain analysis of these genes, the gene loss and duplication events occurred during the evolution of CsC5-MTase and CsdMTase. Furthermore, multiple cis-acting elements were observed in the CsC5-MTase and CsdMTase, including light responsiveness, phytohormone responsiveness, stress responsiveness, and plant growth and development-related elements. Then, we investigated the transcript abundance of CsC5-MTase and CsdMTase under abiotic stress (cold and drought) and withering processing (white tea and oolong tea). Notably, most CsC5-MTases, except for CsCMT1 and CsCMT2, were significantly downregulated under abiotic stress, while the transcript abundance of all four CsdMTase genes was significantly induced. Similarly, the same transcript abundance of CsC5-MTase and CsdMTase was found during withering processing of white tea and oolong tea, respectively. In total, our findings will provide a basis for the roles of CsC5-MTase and CsdMTase in response to abiotic stress and the potential functions of these two gene families in affecting tea flavor during tea withering processing.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 413
Author(s):  
Qing Guo ◽  
Li Li ◽  
Kai Zhao ◽  
Wenjing Yao ◽  
Zihan Cheng ◽  
...  

SQUAMOSA promoter binding protein (SBP) is a kind of plant-specific transcription factor, which plays a crucial role in stress responses and plant growth and development by activating and inhibiting the transcription of multiple target genes. In this study, a total of 30 SBP genes were identified from Populus trichocarpa genome and randomly distributed on 16 chromosomes in poplar. According to phylogenetic analysis, the PtSBPs can be divided into six categories, and 14 out of the genes belong to VI. Furthermore, the SBP genes in VI were proved to have a targeting relationship with miR156. The homeopathic element analysis showed that the promoters of poplar SBP genes mainly contain the elements involved in growth and development, abiotic stress and hormone response. In addition, there existed 10 gene segment duplication events in the SBP gene duplication analysis. Furthermore, there were four poplar and Arabidopsis orthologous gene pairs among the poplar SBP members. What is more, poplar SBP gene family has diverse gene expression pattern under salt stress. As many as nine SBP members were responding to high salt stress and six members possibly participated in growth development and abiotic stress. Yeast two-hybrid experiments indicated that PtSBPs can form heterodimers to interact in the transcriptional regulatory networks. The genome-wide analysis of poplar SBP family will contribute to function characterization of SBP genes in woody plants.



2018 ◽  
Vol 19 (12) ◽  
pp. 3938 ◽  
Author(s):  
Chi-Hui Sun ◽  
Chin-Ying Yang ◽  
Jason Tzen

Tea (Camellia sinensis L.) contains abundant secondary metabolites, which are regulated by numerous enzymes. Hydroxycinnamoyl transferase (HCT) is involved in the biosynthesis pathways of polyphenols and flavonoids, and it can catalyze the transfer of hydroxyconnamoyl coenzyme A to substrates such as quinate, flavanol glycoside, or anthocyanins, thus resulting in the production of chlorogenic acid or acylated flavonol glycoside. In this study, the CsHCT gene was cloned from the Chin-Shin Oolong tea plant, and its protein functions and characteristics were analyzed. The full-length cDNA of CsHCT contains 1311 base pairs and encodes 436 amino acid sequences. Amino acid sequence was highly conserved with other HCTs from Arabidopsis thaliana, Populus trichocarpa, Hibiscus cannabinus, and Coffea canephora. Quantitative real-time polymerase chain reaction analysis showed that CsHCT is highly expressed in the stem tissues of both tea plants and seedlings. The CsHCT expression level was relatively high at high altitudes. The abiotic stress experiment suggested that low temperature, drought, and high salinity induced CsHCT transcription. Furthermore, the results of hormone treatments indicated that abscisic acid (ABA) induced a considerable increase in the CsHCT expression level. This may be attributed to CsHCT involvement in abiotic stress and ABA signaling pathways.



2020 ◽  
Author(s):  
Huan Wang ◽  
ZhaoTang Ding ◽  
Mengjie Gou ◽  
Jianhui Hu ◽  
Yu Wang ◽  
...  

Abstract Background: Autophagy, meaning ‘self-eating’, is required for the degradation and recycling of cytoplasmic constituents under stressful and non-stressful conditions, which helps to maintain cellular homeostasis and delay aging and longevity in eukaryotes. To date, the functions of autophagy have been heavily studied in yeast, mammals and model plants, but few studies have focused on economically important crops, especially tea plants (Camellia sinensis). The roles played by autophagy in coping with various environmental stimuli have not been fully elucidated to date. Therefore, investigating the functions of autophagy-related genes in tea plants may help to elucidate the mechanism governing autophagy in response to stresses in woody plants.Results: In this study, we identified 35 C. sinensis autophagy-related genes (CsARGs). Each CsARG is highly conserved with its homologues from other plant species, except for CsATG14. Tissue-specific expression analysis demonstrated that the abundances of CsARGs varied across different tissues, but CsATG8c/i showed a degree of tissue specificity. Under hormone and abiotic stress conditions, most CsARGs were upregulated at different time points during the treatment. In addition, the expression levels of 10 CsARGs were higher in the cold-resistant cultivar ‘Longjing43’ than in the cold-susceptible cultivar ‘Damianbai’ during the CA period; however, the expression of CsATG101 showed the opposite tendency.Conclusions: We performed a comprehensive bioinformatic and physiological analysis of CsARGs in tea plants, and these results may help to establish a foundation for further research investigating the molecular mechanisms governing autophagy in tea plant growth, development and response to stress. Meanwhile, some CsARGs could serve as putative molecular markers for the breeding of cold-resistant tea plants in future research.



2019 ◽  
Author(s):  
Ryan W. Christian ◽  
Seanna L. Hewitt ◽  
Eric H. Roalson ◽  
Amit Dhingra

AbstractPlastids are morphologically and functionally diverse organelles that are dependent on nuclear-encoded, plastid-targeted proteins for all biochemical and regulatory functions. However, how plastid proteomes vary temporally, spatially, and taxonomically has been historically difficult to analyze at genome-wide scale using experimental methods. A bioinformatics workflow was developed and evaluated using a combination of fast and user-friendly subcellular prediction programs to maximize performance and accuracy for chloroplast transit peptides and demonstrate this technique on the predicted proteomes of 15 sequenced plant genomes. Gene family grouping was then performed in parallel using modified approaches of reciprocal best BLAST hits (RBH) and UCLUST. Between 628 protein families were found to have conserved plastid targeting across angiosperm species using RBH, and 828 using UCLUST. However, thousands of clusters were also detected where only one species had predicted plastid targeting, most notably in Panicum virgatum which had 1,458 proteins with species-unique targeting. An average of 45% overlap was found in plastid-targeted gene families compared with Arabidopsis, but an additional 20% of proteins matched against the full Arabidopsis proteome, indicating a unique evolution of plastid targeting. Neofunctionalization through subcellular relocalization is known to impart novel biological functions but has not been described before on genome-wide scale for the plastid proteome. Further work to correlate these predicted novel plastid-targeted proteins to transcript abundance and high-throughput proteomics will uncover unique aspects of plastid biology and shed light on how the plastid proteome has evolved to change plastid morphology and biochemistry.



Author(s):  
Yijie Li ◽  
Song Chen ◽  
Yuhang Liu ◽  
Haijiao Huang

Research Highlights: This study identified the cell cycle genes in birch that likely play important roles during plant growth and development. This provides a basis for understanding the regulatory mechanism of various cell cycles in Betula pendula. Background and Objectives: The cell cycle factors not only influence cell cycle progression together, but also regulate accretion, division and differentiation of cells, and then regulate growth and development of plant. In this study, we identified the putative cell cycle genes in B. pendula genome, based on the annotated cell cycle genes in A. thaliana. It could serve as a foundation for further functional studies. Materials and Methods: The transcript abundance was determined for all the cell cycle genes in xylem, root, leaf and flower tissues using RNA-seq technology. Results: We identified 59cell cycle gene models in the genome of B. pendula, 17 highly expression genes among them. These genes were BpCDKA.1, BpCDKB1.1, BpCDKB2.1, BpCKS1.2, BpCYCB1.1, BpCYCB1.2, BpCYCB2.1, BpCYCD3.1, BpCYCD3.5, BpDEL1, BpDpa2, BpE2Fa, BpE2Fb, BpKRP1, BpKRP2, BpRb1 and BpWEE1. Conclusions: We identified 17 core cell cycle genes in the genome of birch by combining phylogenetic analysis and tissue specific expression data.





BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Intikhab Alam ◽  
Cui-Cui Liu ◽  
Hong-Liu Ge ◽  
Khadija Batool ◽  
Yan-Qing Yang ◽  
...  

Abstract Background Plant homeodomain (PHD) finger proteins are widely present in all eukaryotes and play important roles in chromatin remodeling and transcriptional regulation. The PHD finger can specifically bind a number of histone modifications as an “epigenome reader”, and mediate the activation or repression of underlying genes. Many PHD finger genes have been characterized in animals, but only few studies were conducted on plant PHD finger genes to this day. Brassica rapa (AA, 2n = 20) is an economically important vegetal, oilseed and fodder crop, and also a good model crop for functional and evolutionary studies of important gene families among Brassica species due to its close relationship to Arabidopsis thaliana. Results We identified a total of 145 putative PHD finger proteins containing 233 PHD domains from the current version of B. rapa genome database. Gene ontology analysis showed that 67.7% of them were predicted to be located in nucleus, and 91.3% were predicted to be involved in protein binding activity. Phylogenetic, gene structure, and additional domain analyses clustered them into different groups and subgroups, reflecting their diverse functional roles during plant growth and development. Chromosomal location analysis showed that they were unevenly distributed on the 10 B. rapa chromosomes. Expression analysis from RNA-Seq data showed that 55.7% of them were constitutively expressed in all the tested tissues or organs with relatively higher expression levels reflecting their important housekeeping roles in plant growth and development, while several other members were identified as preferentially expressed in specific tissues or organs. Expression analysis of a subset of 18 B. rapa PHD finger genes under drought and salt stresses showed that all these tested members were responsive to the two abiotic stress treatments. Conclusions Our results reveal that the PHD finger genes play diverse roles in plant growth and development, and can serve as a source of candidate genes for genetic engineering and improvement of Brassica crops against abiotic stresses. This study provides valuable information and lays the foundation for further functional determination of PHD finger genes across the Brassica species.



2020 ◽  
Vol 62 (7) ◽  
pp. 984-997 ◽  
Author(s):  
Lili Sun ◽  
Mengshi Zhang ◽  
Xiaomei Liu ◽  
Qianzhuo Mao ◽  
Chen Shi ◽  
...  


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhenming Yu ◽  
Guihua Zhang ◽  
Jaime A. Teixeira da Silva ◽  
Mingzhi Li ◽  
Conghui Zhao ◽  
...  

Abstract Background DNA methylation is a conserved and important epigenetic modification involved in the regulation of numerous biological processes, including plant development, secondary metabolism, and response to stresses. However, no information is available regarding the identification of cytosine-5 DNA methyltransferase (C5-MTase) and DNA demethylase (dMTase) genes in the orchid Dendrobium officinale. Results In this study, we performed a genome-wide analysis of DoC5-MTase and DodMTase gene families in D. officinale. Integrated analysis of conserved motifs, gene structures and phylogenetic analysis showed that eight DoC5-MTases were divided into four subfamilies (DoCMT, DoDNMT, DoDRM, DoMET) while three DodMTases were divided into two subfamilies (DoDML3, DoROS1). Multiple cis-acting elements, especially stress-responsive and hormone-responsive ones, were found in the promoter region of DoC5-MTase and DodMTase genes. Furthermore, we investigated the expression profiles of DoC5-MTase and DodMTase in 10 different tissues, as well as their transcript abundance under abiotic stresses (cold and drought) and at the seedling stage, in protocorm-like bodies, shoots, and plantlets. Interestingly, most DoC5-MTases were downregulated whereas DodMTases were upregulated by cold stress. At the seedling stage, DoC5-MTase expression decreased as growth proceeded, but DodMTase expression increased. Conclusions These results provide a basis for elucidating the role of DoC5-MTase and DodMTase in secondary metabolite production and responses to abiotic stresses in D. officinale.



Sign in / Sign up

Export Citation Format

Share Document