plasma membrane permeabilization
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 10)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 15 (11) ◽  
pp. e0009994
Author(s):  
Roberto I. Cuevas-Hernández ◽  
Richard M. B. M. Girard ◽  
Luka Krstulović ◽  
Miroslav Bajić ◽  
Ariel Mariano Silber

Trypanosoma cruzi is a hemoflagellated parasite causing Chagas disease, which affects 6–8 million people in the Americas. More than one hundred years after the description of this disease, the available drugs for treating the T. cruzi infection remain largely unsatisfactory. Chloroquinoline and arylamidine moieties are separately found in various compounds reported for their anti-trypanosoma activities. In this work we evaluate the anti-T. cruzi activity of a collection of 26 “chimeric” molecules combining choroquinoline and amidine structures. In a first screening using epimastigote forms of the parasite as a proxy for the clinically relevant stages, we selected the compound 7-chloro-4-[4-(4,5-dihydro-1H-imidazol-2-yl)phenoxy]quinoline (named here as A6) that performed better as an anti-T. cruzi compound (IC50 of 2.2 ± 0.3 μM) and showed a low toxicity for the mammalian cell CHO-K1 (CC50 of 137.9 ± 17.3 μM). We initially investigated the mechanism of death associated to the selected compound. The A6 did not trigger phosphatidylserine exposure or plasma membrane permeabilization. Further investigation led us to observe that under short-term incubations (until 6 hours), no alterations of mitochondrial function were observed. However, at longer incubation times (4 days), A6 was able to decrease the intracellular Ca2+, to diminish the intracellular ATP levels, and to collapse mitochondrial inner membrane potential. After analysing the cell cycle, we found as well that A6 produced an arrest in the S phase that impairs the parasite proliferation. Finally, A6 was effective against the infective forms of the parasite during the infection of the mammalian host cells at a nanomolar concentration (IC50(tryps) = 26.7 ± 3.7 nM), exhibiting a selectivity index (SI) of 5,170. Our data suggest that A6 is a promising hit against T. cruzi.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1940
Author(s):  
Karol Skłodowski ◽  
Sylwia Joanna Chmielewska ◽  
Joanna Depciuch ◽  
Piotr Deptuła ◽  
Ewelina Piktel ◽  
...  

Background: Infections caused by Candida spp. have become one of the major causes of morbidity and mortality in immunocompromised patients. Therefore, new effective fungicides are urgently needed, especially due to an escalating resistance crisis. Methods: A set of nanosystems with rod- (AuR), peanut- (AuP), and star-shaped (AuS) metal cores were synthesized. These gold nanoparticles were conjugated with ceragenins CSA-13, CSA-44, and CSA-131, and their activity was evaluated against Candida strains (n = 21) through the assessment of MICs (minimum inhibitory concentrations)/MFCs (minimum fungicidal concentrations). Moreover, in order to determine the potential for resistance development, serial passages of Candida cells with tested nanosystems were performed. The principal mechanism of action of Au NPs was evaluated via ROS (reactive oxygen species) generation assessment, plasma membrane permeabilization, and release of the protein content. Finally, to evaluate the potential toxicity of Au NPs, the measurement of hemoglobin release from red blood cells (RBCs) was carried out. Results: All of the tested nanosystems exerted a potent candidacidal activity, regardless of the species or susceptibility to other antifungal agents. Significantly, no resistance development after 25 passages of Candida cells with AuR@CSA-13, AuR@CSA-44, and AuR@CSA-131 nanosystems was observed. Moreover, the fungicidal mechanism of action of the investigated nanosystems involved the generation of ROS, damage of the fungal cell membrane, and leakage of intracellular contents. Notably, no significant RBCs hemolysis at candidacidal doses of tested nanosystems was detected. Conclusions: The results provide rationale for the development of gold nanoparticles of rod-, peanut-, and star-shaped conjugated with CSA-13, CSA-44, and CSA-131 as effective candidacidal agents.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Elke De Schutter ◽  
Benjamin Cappe ◽  
Bartosz Wiernicki ◽  
Peter Vandenabeele ◽  
Franck B. Riquet

Peptides ◽  
2021 ◽  
Vol 135 ◽  
pp. 170432
Author(s):  
Elisabeth Bankell ◽  
Sara Dahl ◽  
Olof Gidlöf ◽  
Daniel Svensson ◽  
Bengt-Olof Nilsson

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241855
Author(s):  
Lais S. Morais ◽  
Renata G. Dusi ◽  
Daniel P. Demarque ◽  
Raquel L. Silva ◽  
Lorena C. Albernaz ◽  
...  

Leishmaniasis is a disease impacting public health worldwide due to its high incidence, morbidity and mortality. Available treatments are costly, lengthy and toxic, not to mention the problem of parasite resistance. The development of alternative treatments is warranted and natural products demonstrate promising activity. This study investigated the activity of Connarus suberosus extracts and compounds against Leishmania species. Several C. suberosus extracts were tested against L. amazonensis promastigotes. Active and inactive extracts were analyzed by UHPLC-MS and data evaluated using a metabolomics platform, revealing an unknown neoflavonoid (connarin, 3), isolated together with the pterocarpans: hemileiocarpin (1) and leiocarpin (2). The aforementioned compounds (1–3), together with the benzoquinones: rapanone (4), embelin (5) and suberonone (6) previously isolated by our group from the same species, were tested against: (i) L. amazonensis and L. infantum promastigotes, and (ii) L. amazonensis intracellular amastigotes, with the most active compound (3) also tested against L. infantum amastigotes. Cytotoxicity against murine peritoneal macrophages was also investigated. Compounds 2 and 3 presented an IC50 33.8 μM and 11.4 μM for L. amazonensis promastigotes; and 44.3 μM and 13.3 μM for L. infantum promastigotes, respectively. For L. amazonensis amastigotes, the IC50 of 2 was 20.4 μM with a selectivity index (SI) of 5.7, while the IC50 of 3 was 2.9 μM with an SI of 6.3. For L. infantum amastigotes, the IC50 of 3 was 7.7 μM. Compounds 2 and 3 presented activity comparable with the miltefosine positive control, with compound 3 found to be 2–4 times more active than the positive control, depending on the Leishmania species and form. The extracts and isolated compounds showed moderate toxicity against macrophages. Compounds 2 and 3 altered the mitochondrial membrane potential (ΔΨm) and neutral lipid body accumulation, while 2 also impacted plasma membrane permeabilization, culminating in cellular disorder and parasite death. Transmission electron microscopy of L. amazonensis promastigotes treated with compound 3 confirmed the presence of lipid bodies. Leiocarpin (2) and connarin (3) demonstrated antileishmanial activity. This study provides knowledge of natural products with antileishmanial activity, paving the way for prototype development to fight this neglected tropical disease.


2020 ◽  
Vol 21 (12) ◽  
pp. 4204
Author(s):  
Josef Stolberg-Stolberg ◽  
Meike Sambale ◽  
Uwe Hansen ◽  
Alexandra Schäfer ◽  
Michael Raschke ◽  
...  

Necroptotic cell death is characterized by an activation of RIPK3 and MLKL that leads to plasma membrane permeabilization and the release of immunostimulatory cellular contents. High levels of chondrocyte death occur following intra-articular trauma, which frequently leads to post-traumatic osteoarthritis development. The aim of this study is to assess necroptosis levels in cartilage post-trauma and to examine whether chondrocyte necroptotic mechanisms may be investigated and modified in vitro. Fractured human and murine cartilage, analysed immunohistochemically for necroptosis marker expression, demonstrated significantly higher levels of RIPK3 and phospho-MLKL than uninjured controls. Primary murine chondrocytes stimulated in vitro with the TNFα and AKT-inhibitor alongside the pan-caspase inhibitor Z-VAD-fmk exhibited a significant loss of metabolic activity and viability, accompanied by an increase in MLKL phosphorylation, which was rescued by further treatment of chondrocytes with necrostatin-1. Transmission electron microscopy demonstrated morphological features of necroptosis in chondrocytes following TNFα and Z-VAD-fmk treatment. Release of dsDNA from necroptotic chondrocytes was found to be significantly increased compared to controls. This study demonstrates that cartilage trauma leads to a high prevalence of necroptotic chondrocyte death, which can be induced and inhibited in vitro, indicating that both necroptosis and its consequential release of immunostimulatory cellular contents are potential therapeutic targets in post-traumatic arthritis treatment.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1882 ◽  
Author(s):  
Madher N. Alfindee ◽  
Yagya P. Subedi ◽  
Michelle M. Grilley ◽  
Jon Y. Takemoto ◽  
Cheng-Wei T. Chang

Amphiphilic kanamycins derived from the classic antibiotic kanamycin have attracted interest due to their novel bioactivities beyond inhibition of bacteria. In this study, the recently described 4″,6″-diaryl amphiphilic kanamycins reported as inhibitors of connexin were examined for their antifungal activities. Nearly all 4″,6″-diaryl amphiphilic kanamycins tested had antifungal activities comparable to those of 4″,6″-dialkyl amphiphilic kanamycins, reported previously against several fungal strains. The minimal growth inhibitory concentrations (MICs) correlated with the degree of amphiphilicity (cLogD) of the di-substituted amphiphilic kanamycins. Using the fluorogenic dyes, SYTOXTM Green and propidium iodide, the most active compounds at the corresponding MICs or at 2×MICs caused biphasic dye fluorescence increases over time with intact cells. Further lowering the concentrations to half MICs caused first-order dye fluorescence increases. Interestingly, 4×MIC or 8×MIC levels resulted in fluorescence suppression that did not correlate with the MIC and plasma membrane permeabilization. The results show that 4″,6″-diaryl amphiphilic kanamycins are antifungal and that amphiphilicity parameter cLogD is useful for the design of the most membrane-active versions. A cautionary limitation of fluorescence suppression was revealed when using fluorogenic dyes to measure cell-permeation mechanisms with these antifungals at high concentrations. Finally, 4″,6″-diaryl amphiphilic kanamycins elevate the production of cellular reactive oxygen species as other reported amphiphilic kanamycins.


Sign in / Sign up

Export Citation Format

Share Document