scholarly journals Cartilage Trauma Induces Necroptotic Chondrocyte Death and Expulsion of Cellular Contents

2020 ◽  
Vol 21 (12) ◽  
pp. 4204
Author(s):  
Josef Stolberg-Stolberg ◽  
Meike Sambale ◽  
Uwe Hansen ◽  
Alexandra Schäfer ◽  
Michael Raschke ◽  
...  

Necroptotic cell death is characterized by an activation of RIPK3 and MLKL that leads to plasma membrane permeabilization and the release of immunostimulatory cellular contents. High levels of chondrocyte death occur following intra-articular trauma, which frequently leads to post-traumatic osteoarthritis development. The aim of this study is to assess necroptosis levels in cartilage post-trauma and to examine whether chondrocyte necroptotic mechanisms may be investigated and modified in vitro. Fractured human and murine cartilage, analysed immunohistochemically for necroptosis marker expression, demonstrated significantly higher levels of RIPK3 and phospho-MLKL than uninjured controls. Primary murine chondrocytes stimulated in vitro with the TNFα and AKT-inhibitor alongside the pan-caspase inhibitor Z-VAD-fmk exhibited a significant loss of metabolic activity and viability, accompanied by an increase in MLKL phosphorylation, which was rescued by further treatment of chondrocytes with necrostatin-1. Transmission electron microscopy demonstrated morphological features of necroptosis in chondrocytes following TNFα and Z-VAD-fmk treatment. Release of dsDNA from necroptotic chondrocytes was found to be significantly increased compared to controls. This study demonstrates that cartilage trauma leads to a high prevalence of necroptotic chondrocyte death, which can be induced and inhibited in vitro, indicating that both necroptosis and its consequential release of immunostimulatory cellular contents are potential therapeutic targets in post-traumatic arthritis treatment.

Author(s):  
Dejan Milentijevic ◽  
David M. Green ◽  
Koosha Aslani ◽  
Peter A. Torzilli ◽  
Russell F. Warren

Painful and inflamed joints result from joint trauma involving disruption of the cartilage [1]. The pathogenesis of post-traumatic osteoarthritis is not well understood but is most likely multifactorial. Other factors, such as inflammation, may be a critical precursor for post-traumatic arthritis. Transient acute synovitis and inflammation following a traumatic event can persist for months and may be representative of a serious joint injury [2]. Joint effusion aspirates from patients in the acute phase of injury have a higher level of activated leukocytes and an increased rate of reactive oxygen species (ROS) production relative to autologous peripheral blood [3]. In an in vitro study, the presence of inflammatory leukocytes caused more chondrocyte death isolated from traumatized matrix region relative to impacted cartilage alone [4]. Our previous study showed that severe trauma may not be a good predictor for the development of post-traumatic arthritis since chondrocyte death and matrix loss was minimal up to seven days post-trauma [5].


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Motoo Saito ◽  
Kohei Nishitani ◽  
Hanako O. Ikeda ◽  
Shigeo Yoshida ◽  
Sachiko Iwai ◽  
...  

AbstractPost-traumatic osteoarthritis (PTOA) is a major cause which hinders patients from the recovery after intra-articular injuries or surgeries. Currently, no effective treatment is available. In this study, we showed that inhibition of the acute stage chondrocyte death is a promising strategy to mitigate the development of PTOA. Namely, we examined efficacies of Kyoto University Substance (KUS) 121, a valosin-containing protein modulator, for PTOA as well as its therapeutic mechanisms. In vivo, in a rat PTOA model by cyclic compressive loading, intra-articular treatments of KUS121 significantly improved the modified Mankin scores and reduced damaged-cartilage volumes, as compared to vehicle treatment. Moreover, KUS121 markedly reduced the numbers of TUNEL-, CHOP-, MMP-13-, and ADAMTS-5-positive chondrocytes in the damaged knees. In vitro, KUS121 rescued human articular chondrocytes from tunicamycin-induced cell death, in both monolayer culture and cartilage explants. It also significantly downregulated the protein or gene expression of ER stress markers, proinflammatory cytokines, and extracellular-matrix-degrading enzymes induced by tunicamycin or IL-1β. Collectively, these results demonstrated that KUS121 protected chondrocytes from cell death through the inhibition of excessive ER stress. Therefore, KUS121 would be a new, promising therapeutic agent with a protective effect on the progression of PTOA.


2016 ◽  
Vol 60 (5) ◽  
pp. 2610-2619 ◽  
Author(s):  
S. Cauchard ◽  
N. Van Reet ◽  
P. Büscher ◽  
D. Goux ◽  
J. Grötzinger ◽  
...  

ABSTRACTTrypanozoonparasites infect both humans, causing sleeping sickness, and animals, causing nagana, surra, and dourine. Control of nagana and surra depends to a great extent on chemotherapy. However, drug resistance to several of the front-line drugs is rising. Furthermore, there is no official treatment for dourine. Therefore, there is an urgent need to develop antiparasitic agents with novel modes of action. Host defense peptides have recently gained attention as promising candidates. We have previously reported that one such peptide, the equine antimicrobial peptide eCATH1, is highly active against equine Gram-positive and Gram-negative bacteria, without cytotoxicity against mammalian cells at bacteriolytic concentrations. In the present study, we show that eCATH1 exhibits anin vitro50% inhibitory concentration (IC50) of 9.5 μM againstTrypanosoma brucei brucei,Trypanosoma evansi, andTrypanosoma equiperdum. Its trypanocidal mechanism involves plasma membrane permeabilization and mitochondrial alteration based on the following data: (i) eCATH1 induces the rapid influx of the vital dye SYTOX Green; (ii) it rapidly disrupts mitochondrial membrane potential, as revealed by immunofluorescence microscopy using the fluorescent dye rhodamine 123; (iii) it severely damages the membrane and intracellular structures of the parasites as early as 15 min after exposure at 9.5 μM and 5 min after exposure at higher concentrations (19 μM), as evidenced by scanning and transmission electron microscopy. We also demonstrate that administration of eCATH1 at a dose of 10 mg/kg toT. equiperdum-infected mice delays mortality. Taken together, our findings suggest that eCATH1 is an interesting template for the development of novel therapeutic agents in the treatment of trypanosome infections.


Author(s):  
Tai-Te Chao ◽  
John Sullivan ◽  
Awtar Krishan

Maytansine, a novel ansa macrolide (1), has potent anti-tumor and antimitotic activity (2, 3). It blocks cell cycle traverse in mitosis with resultant accumulation of metaphase cells (4). Inhibition of brain tubulin polymerization in vitro by maytansine has also been reported (3). The C-mitotic effect of this drug is similar to that of the well known Vinca- alkaloids, vinblastine and vincristine. This study was carried out to examine the effects of maytansine on the cell cycle traverse and the fine struc- I ture of human lymphoblasts.Log-phase cultures of CCRF-CEM human lymphoblasts were exposed to maytansine concentrations from 10-6 M to 10-10 M for 18 hrs. Aliquots of cells were removed for cell cycle analysis by flow microfluorometry (FMF) (5) and also processed for transmission electron microscopy (TEM). FMF analysis of cells treated with 10-8 M maytansine showed a reduction in the number of G1 cells and a corresponding build-up of cells with G2/M DNA content.


Author(s):  
John C. Garancis ◽  
Robert O. Hussa ◽  
Michael T. Story ◽  
Donald Yorde ◽  
Roland A. Pattillo

Human malignant trophoblast cells in continuous culture were incubated for 3 days in medium containing 1 mM N6-O2'-dibutyryl cyclic adenosine 3':5'-monophosphate (dibutyryl cyclic AMP) and 1 mM theophylline. The culture fluid was replenished daily. Stimulated cultures secreted many times more chorionic gonadotropin and estrogens than did control cultures in the absence of increased cellular proliferation. Scanning electron microscopy revealed remarkable surface changes of stimulated cells. Control cells (not stimulated) were smooth or provided with varying numbers of microvilli (Fig. 1). The latter, usually, were short and thin. The surface features of stimulated cells were considerably different. There was marked increase of microvilli which appeared elongated and thick. Many cells were covered with confluent polypoid projections (Fig. 2). Transmission electron microscopy demonstrated marked activity of cytoplasmic organelles. Mitochondria were increased in number and size; some giant forms with numerous cristae were observed.


Author(s):  
H. J. Kirch ◽  
G. Spates ◽  
R. Droleskey ◽  
W.J. Kloft ◽  
J.R. DeLoach

Blood feeding insects have to rely on the protein content of mammalian blood to insure reproduction. A substantial quantity of protein is provided by hemoglobin present in erythrocytes. Access to hemoglobin is accomplished only via erythrocyte lysis. It has been shown that midgut homogenates from the blood feeding stable fly, Stomoxys calcitrans, contain free fatty acids and it was proposed that these detergent-like compounds play a major role as hemolysins in the digestive physiology of this species. More recently sphingomyelinase activity was detected in midgut preparations of this fly, which would provide a potential tool for the enzymatic cleavage of the erythrocyte's membrane sphingomyelin. The action of specific hemolytic factors should affect the erythrocyte's morphology. The shape of bovine erythrocytes undergoing in vitro hemolysis by crude midgut homogenates from the stable fly was examined by scanning and transmission electron microscopy.


Author(s):  
Gao Fengming

Transmission electron microscope(TEM) and scanning electron microscope(SEM) were widely used in experimental tumor studies. They are useful for evaluation of cellular transformation in vitro, classification of histological types of tumors and treating effect of tumors. We have obtained some results as follows:1. Studies on the malignant transformation of mammalian cells in vitro. Syrian golden hamster embryo cells(SGHEC) were transformed in vitro by ThO2 and/or ore dust. In a few days after dust added into medium, some dust crystals were phagocytized. Two weeks later, malignant transformation took place. These cells were of different size, nuclear pleomorphism, numerous ribosomes, increasing of microvilli on cell surface with various length and thickness, and blebs and ruffles(Figs. 1,2). Myelomonocytic leukemic transformation of mouse embryo cells(MEC) was induced in vitro by 3H-TdR. Transformed cells were become round from fusiform. The number of mitochondria and endoplasmic reticulum was reduced, ribosomes and nucleoli increased, shape of nuclei irregular, microvilli increased, and blebs and ruffles appeared(Fig. 3).


2021 ◽  
pp. 088532822110134
Author(s):  
Sushant Singh ◽  
Udit Kumar ◽  
David Gittess ◽  
Tamil S Sakthivel ◽  
Balaashwin Babu ◽  
...  

Many studies have linked reactive oxygen species (ROS) to various diseases. Biomedical research has therefore sought a way to control and regulate ROS produced in biological systems. In recent years, cerium oxide nanoparticles (nanoceria, CNPs) have been pursued due to their ability to act as regenerative ROS scavengers. In particular, they are shown to have either superoxide dismutase (SOD) or catalase mimetic (CAT) potential depending on the ratio of Ce3+/Ce4+ valence states. Moreover, it has been demonstrated that SOD mimetic activity can be diminished by the presence of phosphate, which can be a problem given that many biological systems operate in a phosphate-rich environment. Herein, we report a CNP formulation with both SOD and catalase mimetic activity that is preserved in a phosphate-rich media. Characterization demonstrated a highly dispersed, stable solution of uniform-sized, spherical-elliptical shaped CNP of 12 ± 2 nm, as determined through dynamic light scattering, zeta potential, and transmission electron microscopy. Mixed valence states of Ce ions were observed via UV/Visible spectroscopy and XPS (Ce3+/Ce4+ > 1) (Ce3+∼ 62%). X-ray diffraction and XPS confirmed the presence of oxygen-deficient cerium oxide (CeO2-x) particles. Finally, the CNP demonstrated very good biocompatibility and efficient reduction of hydrogen peroxide under in-vitro conditions.


2020 ◽  
Vol 9 (1) ◽  
pp. 416-428 ◽  
Author(s):  
Raghad R. Alzahrani ◽  
Manal M. Alkhulaifi ◽  
Nouf M. Al-Enazi

AbstractThe adaptive nature of algae results in producing unique chemical components that are gaining attention due to their efficiency in many fields and abundance. In this study, we screened the phytochemicals from the brown alga Hydroclathrus clathratus and tested its ability to produce silver nanoparticles (AgNPs) extracellularly for the first time. Lastly, we investigated its biological activity against a variety of bacteria. The biosynthesized nanoparticles were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and energy-dispersive spectroscopy. The biological efficacy of AgNPs was tested against eighteen different bacteria, including seven multidrug-resistant bacteria. Phytochemical screening of the alga revealed the presence of saturated and unsaturated fatty acids, sugars, carboxylic acid derivatives, triterpenoids, steroids, and other components. Formed AgNPs were stable and ranged in size between 7 and 83 nm and presented a variety of shapes. Acinetobacter baumannii, Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), and MDR A. baumannii were the most affected among the bacteria. The biofilm formation and development assay presented a noteworthy activity against MRSA, with an inhibition percentage of 99%. Acknowledging the future of nano-antibiotics encourages scientists to explore and enhance their potency, notably if they were obtained using green, rapid, and efficient methods.


Sign in / Sign up

Export Citation Format

Share Document