S-Duct Diffuser Offset-to-Length Ratio Effect on Aerodynamic Performance of Propulsion-System Inlet of High Speed Aircraft

Author(s):  
Asad Asghar ◽  
William D. E. Allan ◽  
Marc LaViolette ◽  
Robert Stowe ◽  
Derrick Alexander ◽  
...  

This paper reports the internal performance evaluation of S-duct diffusers with different offset-to-length ratios. The geometric parameters of S-duct diffusers are currently of great interest because of increasing demand for stealth and consequently, their effects on drag and aero-engine stability margin. The generic S-duct diffuser selected as a baseline had a rectangular-entrance and circular exit. Test articles were tested with the high subsonic, Ma = 0.8 and 0.85, flow and were manufactured using 3D printing. stream-wise static pressure and exit-plane total pressure were measured in a test rig using surface pressure taps and a 5-probe rotating rake, respectively. The baseline and variant S-ducts were also simulated through computational fluid dynamics. The investigation indicated the presence of stream-wise and circumferential pressure gradients leading to a separated flow in the S-duct diffusers and distortion at the exit plane. The static pressure recovery decreased and total pressure loss increased with an increase in the offset-to-length ratio. The circumferential distortion at the engine face clearly indicated a trend with respect to the offset-to-length ratio, however radial distortion did not.

Author(s):  
Prasanta K. Sinha ◽  
Biswajit Haldar ◽  
Amar N. Mullick ◽  
Bireswar Majumdar

Curved diffusers are an integral component of the gas turbine engines of high-speed aircraft. These facilitate effective operation of the combustor by reducing the total pressure loss. The performance characteristics of these diffusers depend on their geometry and the inlet conditions. In the present investigation the distribution of axial velocity, transverse velocity, mean velocity, static and total pressures are experimentally studied on a curved diffuser of 30° angle of turn with an area ratio of 1.27. The centreline length was chosen as three times of inlet diameter. The experimental results then were numerically validated with the help of Fluent, the commercial CFD software. The measurements of axial velocity, transverse velocity, mean velocity, static pressure and total pressure distribution were taken at Reynolds number 1.9 × 105 based on inlet diameter and mass average inlet velocity. The mean velocity and all the three components of mean velocity were measured with the help of a pre-calibrated five-hole pressure probe. The velocity distribution shows that the flow is symmetrical and uniform at the inlet and exit sections and high velocity cores are accumulated at the top concave surface due to the combined effect of velocity diffusion and centrifugal action. It also indicates the possible development of secondary motions between the concave and convex walls of the test diffuser. The mass average static pressure recovery and total pressure loss within the curved diffuser increases continuously from inlet to exit and they attained maximum values of 35% and 14% respectively. A comparison between the experimental and predicated results shows a good qualitative agreement between the two. Standard k-ε model in Fluent solver was chosen for validation. It has been observed that coefficient of pressure recovery Cpr for the computational investigation was obtained as 38% compared to the experimental investigation which was 35% and the coefficient of pressure loss is obtained as 13% in computation investigation compared to the 14% in experimental study, which indicates a very good qualitative matching.


2013 ◽  
Vol 117 (1188) ◽  
pp. 193-211 ◽  
Author(s):  
S. L. N. Desikan ◽  
J. Kurian

AbstractThis paper presents the experimental results of the role of struts in supersonic mixing. Experiments were carried out with novel strut configurations to show their capabilities on mixing with reasonable total pressure losses. The performances were compared with the Baseline Strut configurations (BSPI and BSNI). The analysis presented includes the mixing quantifications using Mie scattering signature, flow field visualisation, measurement of wall static pressure and the total pressure loss calculations. The results clearly demonstrated that the proposed strut configurations achieved increased mixing (7-8%) compared to BSPI with increase in total pressure loss (2%). On the other hand, when compared with BSNI, the mixing performance was found to be decreased by 6% with reduced total pressure loss (12%).


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 208 ◽  
Author(s):  
Humrutha Gunasekaran ◽  
Thillaikumar Thangaraj ◽  
Tamal Jana ◽  
Mrinal Kaushik

In order to achieve proficient combustion with the present technologies, the flow through an aircraft intake operating at supersonic and hypersonic Mach numbers must be decelerated to a low-subsonic level before entering the combustion chamber. High-speed intakes are generally designed to act as a flow compressor even in the absence of mechanical compressors. The reduction in flow velocity is essentially achieved by generating a series of oblique as well as normal shock waves in the external ramp region and also in the internal isolator region of the intake. Thus, these intakes are also referred to as mixed-compression intakes. Nevertheless, the benefits of shock-generated compression do not arise independently but with enormous losses because of the shockwave and boundary layer interactions (SBLIs). These interactions should be manipulated to minimize or alleviate the losses. In the present investigation a wall ventilation using a new cavity configuration (having a cross-section similar to a truncated rectangle with the top wall covered by a thin perforated surface is deployed underneath the cowl-shock impinging point of the Mach 2.2 mixed-compression intake. The intake is tested for four different contraction ratios of 1.16, 1.19, 1.22, and 1.25, with emphasis on the effect of porosity, which is varied at 10.6%, 15.7%, 18.8%, and 22.5%. The introduction of porosity on the surface covering the cavity has been proved to be beneficial in decreasing the wall static pressure substantially as compared to the plain intake. A maximum of approximately 24.2% in the reduction in pressure at the upstream proximal location of 0.48 L is achieved in the case of the wall-ventilated intake with 18.8% porosity, at the contraction ratio of 1.19. The Schlieren density field images confirm the efficacy of the 18.8% ventilation in stretching the shock trains and in decreasing the separation length. At the contraction ratios of 1.19, 1.22, and 1.25 (‘dual-mode’ contraction ratios), the controlled intakes with higher porosity reduce the pressure gradients across the shockwaves and thereby yields an ‘intake-start’ condition. However, for the uncontrolled intake, the ‘unstart’ condition emerges due to the formation of a normal shock at the cowl lip. Additionally, the cowl shock in the ‘unstart’ intake is shifted upstream because of higher downstream pressure.


Author(s):  
Asad Asghar ◽  
Robert A. Stowe ◽  
William D. E. Allan ◽  
Derrick Alexander

The characteristic aerodynamics of inlets in a fuselage-embedded propulsion system of an air-vehicle vary from one configuration to other, making it necessary to document the performance of each and every type of inlet in various flight conditions. This paper focuses on the internal performance evaluation of a baseline S-duct diffuser for a future parametric investigation of a generic S-duct inlet. The generic baseline was a rectangular-entrance, transitioning S-duct diffuser in high subsonic (Mach number > 0.8) flow. The test section was manufactured using rapid prototyping for facilitating a future parametric investigation of geometry. Streamwise static pressure and exit-plane total pressure were measured in a test-rig using surface pressure taps and a 5-probe rotating rake, respectively and was simulated through computational fluid dynamics. The investigation indicated the presence of streamwise and circumferential pressure gradients leading to three dimensional flow in the S-duct diffuser and distortion at the exit plane. Total pressure losses and circumferential and radial distortions at the exit plane were higher than that of the podded nacelle type of inlet. The work represents the beginning of the development of a database for the performance of a particular type of generic inlet. This database will be useful for predicting the performance of aero-engines and air vehicles in high subsonic flight.


Author(s):  
Asad Asghar ◽  
Robert A. Stowe ◽  
William D. E. Allan ◽  
Derrick Alexander

This paper reports the internal performance evaluation of S-duct diffusers with different entrance aspect ratios as part of an ongoing parametric investigation of a generic S-duct inlet. The generic S-duct diffusers were a rectangular-entrance (aspect ratio 1.5 and 2.0) transitioning S-duct diffuser in high subsonic (Mach number > 0.8) flow. The test section was manufactured using rapid prototyping for facilitating the parametric investigation of the geometry. Streamwise static pressure and exit-plane total pressure were measured in a test-rig using surface pressure taps and a 5-probe rotating rake, respectively and the baseline and a variant was simulated through computational fluid dynamics. The investigation indicated the presence of streamwise and circumferential pressure gradients leading to a three dimensional flow in the S-duct diffuser and distortion at the exit plane. The static pressure recovery increased for the diffuser with higher aspect ratio. Total pressure losses and circumferential and radial distortions at the exit plane were higher than that of the podded nacelle type of inlet. The increase in the total pressure recovery was observed for the increase in the aspect ratio for the baseline area ratio (1.57) S-ducts, but without a clear trend for the other area ratio (1.8) ducts. The work represents the beginning of the development of a database for the performance of a particular type of generic inlet. This database will be useful for predicting the performance of aero-engines and air vehicles in high subsonic flight.


Author(s):  
Fangyuan Lou ◽  
Douglas R. Matthews ◽  
Nicholas J. Kormanik ◽  
Nicole L. Key

Abstract In the previous part of the paper, a novel method to reconstruct the compressor non-uniform circumferential flow field using spatially under-sampled data points is developed. In this part of the paper, the method is applied to two compressor research articles to further demonstrate the potential of the novel method in resolving the important flow features associated with these circumferential non-uniformities. In the first experiment, the static pressure field at the leading edge of a vaned diffuser in a high-speed centrifugal compressor is reconstructed using pressure readings from nine static pressure taps placed on the hub of the diffuser. The magnitude and phase information for the first three dominant wavelets are characterized. Additionally, the method shows significant advantages over the traditional averaging methods for calculating repeatable mean values of the static pressure. While using the multi-wavelet approximation method, the errors in the mean static pressure with one dropout measurement are 70% less than the pitchwise-averaging method. In the second experiment, the full-annulus total pressure field downstream of Stator 2 in a three-stage axial compressor is reconstructed from a small segment of data representing 20% coverage of the annulus. Results show very good agreement between the reconstructed total pressure profile and the experiment at a variety of spanwise locations from near hub to near shroud. The features associated with blade-row interactions accounting for passage-to-passage variations are resolved in the reconstructed total pressure profile.


2014 ◽  
Vol 599-601 ◽  
pp. 377-380
Author(s):  
Qiao Li ◽  
Ya Yu Huang

The numerical simulation calculation of air-assisted atomizer internal gas flow field is done, the distribution and changes of the nozzle inside flow field total pressure, velocity, and dynamic and static pressure are analyzed. The analysis shows that the total pressure loss is less; due to the effect of gas viscous, the high-speed air flow is formed vortex flow near the outlet nozzle and the mutual influence between the dynamic and static pressure. A new way is supported for optimizing the nozzle structure according to these studies.


Author(s):  
Asad Asghar ◽  
Robert A. Stowe ◽  
William D. E. Allan ◽  
Derrick Alexander

This paper reports the internal performance evaluation of S-duct diffusers with different entrance aspect ratios as part of a parametric investigation of a generic S-duct inlet. The generic S-duct diffusers studied had a rectangular entrance (aspect ratios of 1.5 and 2.0) transitioning S-duct diffuser in high-subsonic (Mach number > 0.8) flow. The test section was manufactured using rapid prototyping to facilitate the parametric investigation of the geometry. Streamwise static pressure and exit-plane total pressure were measured in a test-rig using surface pressure taps and a five-probe rotating rake, respectively. The baseline and a variant were simulated through computational fluid dynamics (CFD). The investigation indicated the presence of streamwise and circumferential pressure gradients leading to a three-dimensional flow in the S-duct diffuser and to distortion at the exit plane. The static pressure recovery increased for the diffuser with the higher aspect ratio. Total pressure losses and circumferential and radial distortions at the exit plane were higher than that of the podded nacelle type of inlet. An increase in the total pressure recovery was observed for the increase in the aspect ratio for the baseline area ratio (1.57) S-ducts, but without a clear trend for the other area ratio (1.8) ducts. The work represents the development of a database on the performance of a particular type of generic inlet. This database will be useful for predicting the performance of aero-engines and air vehicles in high-subsonic flight.


2021 ◽  
pp. 1-12
Author(s):  
Fangyuan Lou ◽  
Nicholas J. Kormanik III ◽  
Douglas Matthews ◽  
Nicole L. Key

Abstract In the previous part of the paper, a novel method to reconstruct the compressor non-uniform circumferential flow field using spatially under-sampled data points is developed. In this part of the paper, the method is applied to two compressor research articles to further demonstrate the potential of the novel method in resolving the important flow features associated with these circumferential non-uniformities. In the first experiment, the static pressure field at the leading edge of a vaned diffuser in a high-speed centrifugal compressor is reconstructed using pressure readings from nine static pressure taps placed on the hub of the diffuser. The magnitude and phase information for the first three dominant wavelets are characterized. Additionally, the method shows significant advantages over the traditional averaging methods for calculating repeatable mean values of the static pressure. While using the multi-wavelet approximation method, the errors in the mean static pressure with one dropout measurement are 70% less than the pitchwise-averaging method. In the second experiment, the full-annulus total pressure field downstream of Rotor 2 in a three-stage axial compressor is reconstructed from a small segment of data representing 20% coverage of the annulus. Results show very good agreement between the reconstructed total pressure profile and the experiment at a variety of spanwise locations from near hub to near shroud. The features associated with blade-row interactions accounting for passage-to-passage variations are resolved in the reconstructed total pressure profile.


1972 ◽  
Vol 23 (2) ◽  
pp. 131-140 ◽  
Author(s):  
P Bansod ◽  
P Bradshaw

SummaryMeasurements are presented of total pressure, static pressure, surface shear stress and yaw angle in the flow through several S-shaped ducts, each with a thin turbulent boundary layer at entry. The results show that the region of low total pressure in the exit plane, found by previous workers, is due to expulsion of boundary-layer fluid by a pair of contra-totating vortices in the boundary layer. The generation of these vortices is explained: similarly-produced vortices, with similar effects, occur in some types of wind-tunnel contraction and possibly in other three-dimensional flows.


Sign in / Sign up

Export Citation Format

Share Document