aqueous polymer solution
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 3)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261736
Author(s):  
Takashi Nishio ◽  
Yuko Yoshikawa ◽  
Kenichi Yoshikawa

Background It is becoming clearer that living cells use water/water (w/w) phase separation to form membraneless organelles that exhibit various important biological functions. Currently, it is believed that the specific localization of biomacromolecules, including DNA, RNA and proteins in w/w microdroplets is closely related to their bio-activity. Despite the importance of this possible role of micro segregation, our understanding of the underlying physico-chemical mechanism is still unrefined. Further research to unveil the underlying mechanism of the localization of macromolecules in relation to their steric conformation in w/w microdroplets is needed. Principal findings Single-DNA observation of genome-size DNA (T4 GT7 bacteriophage DNA; 166kbp) by fluorescence microscopy revealed that DNAs are spontaneously incorporated into w/w microdroplets generated in a binary aqueous polymer solution with polyethylene glycol (PEG) and dextran (DEX). Interestingly, DNAs with elongated coil and shrunken conformations exhibit Brownian fluctuation inside the droplet. On the other hand, tightly packed compact globules, as well as assemblies of multiple condensed DNAs, tend to be located near the interface in the droplet. Conclusion and significance The specific localization of DNA molecules depending on their higher-order structure occurs in w/w microdroplet phase-separation solution under a binary aqueous polymer solution. Such an aqueous solution with polymers mimics the crowded conditions in living cells, where aqueous macromolecules exist at a level of 30–40 weight %. The specific positioning of DNA depending on its higher-order structure in w/w microdroplets is expected to provide novel insights into the mechanism and function of membraneless organelles and micro-segregated particles in living cells.


Author(s):  
Margarita A. Dyakonova ◽  
Yanan Li ◽  
Ioanna N. Besiri ◽  
Zhenyu Di ◽  
Isabelle Grillo ◽  
...  

AbstractA triblock copolymer with hydrophobic end blocks and a polyampholytic middle block is investigated in a mixture of water and acetone with a focus on the dependence of the rheological properties and of the micellar structure and correlation on the content of acetone. The polymer under study is PMMA86-b-P(DEA190-co-MAA96)-b-PMMA86, where PMMA stands for poly(methyl methacrylate) and P(DEA-co-MAA) for poly(2-(diethylamino) ethyl methacrylate-co-methacrylic acid). The pH is chosen at 3. Rheological measurements reveal a transition from a viscoelastic solid over a viscoelastic liquid to a freely flowing liquid upon addition of 5 or 10 wt% of acetone to a 3 wt% aqueous polymer solution, respectively. Using small-angle neutron scattering on 0.5 wt% polymer solutions in water/acetone with the content of the latter ranging between 0 and 30 wt%, significant structural changes are observed as well, such as a decrease of the distance between the PMMA cross-links and of the size of the network clusters upon increasing acetone constant. These changes are attributed to the reduction of the dielectric constant by the addition of the cosolvent acetone, enhancing the flexibility of the middle blocks and their tendency to backfolding, as well as to the decrease of the solvent selectivity, inducing significant exchange rate enhancement of the core-forming PMMA blocks.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1626 ◽  
Author(s):  
Qian Cao ◽  
Baris Kumru

High potential of emission chemistry has been visualized in many fields, from sensors and imaging to displays. In general, conjugated polymers are the top rankers for such chemistry, despite the fact that they bring solubility problems, high expenses, toxicity and demanding synthesis. Metal-free polymeric semiconductor graphitic carbon nitride (g-CN) has been an attractive candidate for visible light-induced photocatalysis, and its emission properties have been optimized and explored recently. Herein, we present modified g-CN nanoparticles as organodispersible conjugated polymer materials to be utilized in a heterophase emission systems. The injection of a g-CN organic dispersion in aqueous polymer solution not only provides retention of the shape by Pickering stabilization of g-CN, but high intensity emission is also obtained. The heterophase all-liquid emission display can be further modified by the addition of simple conjugated organic molecules to the initial g-CN dispersion, which provides a platform for multicolor emission. We believe that such shape-tailored and stabilized liquid–liquid multicolor emission systems are intriguing for sensing, displays and photonics.


Author(s):  
V.V. Pukhnachev ◽  
A.G. Petrova ◽  
O.A. Frolovskaya

Mathematical models for the motion of weak solutions of polymers have been studied over the past 50 years. The initial model (Voitkunskii, Amfilokhiev, and Pavlovskii, 1970) contains two key parameters - relaxation viscosity and shear stress relaxation time. In the limiting case, when the last parameter is small, the Pavlovskii model (1971) arises. Its equations are close to second-grade fluid equations (Rivlin and Eriksen, 1955). The paper contains an overview of the works on all three models and new results related to the Pavlovskii model. The solution to the problem of the un-steady layered flow of an aqueous polymer solution in a layer with a free boundary, the boundary condition on which includes the time derivative of the desired function is constructed. We derive the equations that describe the motion of a polymer solution in a laminar boundary layer near a rectilinear plate. The parameter included in equations characterizes the ratio of the thickness of the Prandtl boundary layer to the thickness of the relaxation boundary layer. We study the influence of this parameter on the motion picture by the example of a stationary flow near a critical point.


2020 ◽  
Vol 117 (15) ◽  
pp. 8360-8365 ◽  
Author(s):  
Ganhua Xie ◽  
Joe Forth ◽  
Shipei Zhu ◽  
Brett A. Helms ◽  
Paul D. Ashby ◽  
...  

Natural and man-made robotic systems use the interfacial tension between two fluids to support dense objects on liquid surfaces. Here, we show that coacervate-encased droplets of an aqueous polymer solution can be hung from the surface of a less dense aqueous polymer solution using surface tension. The forces acting on and the shapes of the hanging droplets can be controlled. Sacs with homogeneous and heterogeneous surfaces are hung from the surface and, by capillary forces, form well-ordered arrays. Locomotion and rotation can be achieved by embedding magnetic microparticles within the assemblies. Direct contact of the droplet with air enables in situ manipulation and compartmentalized cascading chemical reactions with selective transport. Applications including functional microreactors, motors, and biomimetic robots are evident.


2019 ◽  
Vol 2019.56 (0) ◽  
pp. E014
Author(s):  
Yu NORIMATSU ◽  
Raden R. SISWORO ◽  
Masato HASEGAWA

2019 ◽  
Vol 21 (9) ◽  
pp. 5106-5116 ◽  
Author(s):  
H. A. Pérez-Ramírez ◽  
C. Haro-Pérez ◽  
E. Vázquez-Contreras ◽  
J. Klapp ◽  
G. Bautista-Carbajal ◽  
...  

The lower critical solution temperature (LCST) of poly-N-isopropylacrylamide (p-NIPAM) diminishes when a small volume of acetone is added to the aqueous polymer solution, and then increases for further additions, producing a minimum at a certain acetone concentration.


2019 ◽  
Vol 29 (1) ◽  
pp. 141-161 ◽  
Author(s):  
R. E. Corman ◽  
Randy H. Ewoldt

Abstract We propose and study methods to improve tactile intuition for linear viscoelastic fluids. This includes (i) Pipkin mapping with amplitude based on stress rather than strain or strain-rate to map perception to rheological test conditions; and (ii) data reduction of linear viscoelastic functions to generate multi-dimensional Ashby-style cross-property plots. Two model materials are used, specifically chosen to be easily accessible and safe to handle, with variable elastic, viscous, and relaxation time distributions. First, a commercially available polymer melt known as physical therapy putty, reminiscent of Silly Putty, designed for a range of user experiences (extra-soft to extra-firm). Second, a transiently cross-linked aqueous polymer solution (Polyvinyl alcohol-Sodium Tetraborate, PVA-Borax). Readers are encouraged to procure or produce the samples themselves to build intuition. The methods studied here reduce the complexity of the function-valued viscoelastic data, identifying what key features we sense and see when handling these materials, and provide a framework for tactile intuition, material selection, and material design for linear viscoelastic fluids generally.


Sign in / Sign up

Export Citation Format

Share Document