marine compound
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 2 (2) ◽  
pp. 42-50
Author(s):  
Fitri Lianingsih

The novel coronavirus 2019 (SARS-CoV-2) is one of the viruses that can infect humans and cause high mortality worldwide. The protease (Mpro) is key SARS-CoV-2 an enzyme mediates the viral replication and the transcription. Mpro is currently used as the candidate for the SARS-CoV-2 vaccine because Mpro is one of the key enzymes in the viral life cycle that essential for interactions between the virus and host cell receptor during viral entry. The Mpro can be a target protein to design the novel drug of SARS-CoV-2. The drug design from natural products that are considered to have low toxicity is needed against the virus. The study aims to determines the potential pharmacology of Trisindoline 1 compound from the sponge Hyrtios altum against SARS-CoV-2 and to find the amino acid residues between interaction ligand-protein receptors. The methods of this study use the virtual screening of Auto Dock Vina and visualization the amino acid residue using Bio via Discovery Studio. The result of this study was the selected marine compound from Trisindoline 1 may have potential to developed as inhibitor of SARS-CoV-2.Keywords: In Silico, Mpro, Sars Cov 2, Trisindoline 1, Sponges


2021 ◽  
pp. 107963
Author(s):  
Haifan Gong ◽  
Julia Bandura ◽  
Guan-Lei Wang ◽  
Zhong-Ping Feng ◽  
Hong-Shuo Sun
Keyword(s):  

2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Jasem Saki ◽  
Khalil Saki ◽  
Reza Arjmand

Background: The first drug for the treatment of leishmaniasis is pentavalent antimony compounds which have great side effects. Objectives: This study aimed to assess apoptosis induction by HESA-A, an herbal marine compound in Leishmania major promastigotes. Methods: Leishmania major promastigotes were treated with HESA-A in different increasing concentrations ranged 1.625 - 120 µg/mL, and amphotericin B and the phenomenon of apoptosis in the parasite were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and DNA fragmentation tests. Results: The IC50 value of the compound and amphotericin B at 72 h were estimated at 2.81 µg/mL and 40 µg/mL, respectively. After 72 h of the adjacency of Leishmania major promastigotes with IC50 dose (2.81 µg/mL), the percentage of promastigotes in early and late apoptosis phases in the treated group was 5.4% and 60.4%, respectively. DNA fragmentation of Leishmania major promastigotes treated with 2.81 µg/mL for 72 h was observed. Conclusions: HESA-A, with significant induction of apoptosis in Leishmania major promastigotes, can be plausible in the treatment of cutaneous Leishmaniasis.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 995
Author(s):  
Laura Schmitt ◽  
Ilka Hinxlage ◽  
Pablo A. Cea ◽  
Holger Gohlke ◽  
Sebastian Wesselborg

Polybrominated diphenyl ethers (PBDEs) are a group of molecules with an ambiguous background in literature. PBDEs were first isolated from marine sponges of Dysidea species in 1981 and have been under continuous research to the present day. This article summarizes the two research aspects, (i) the marine compound chemistry research dealing with naturally produced PBDEs and (ii) the environmental toxicology research dealing with synthetically-produced brominated flame-retardant PBDEs. The different bioactivity patterns are set in relation to the structural similarities and dissimilarities between both groups. In addition, this article gives a first structure–activity relationship analysis comparing both groups of PBDEs. Moreover, we provide novel data of a promising anticancer therapeutic PBDE (i.e., 4,5,6-tribromo-2-(2′,4′-dibromophenoxy)phenol; termed P01F08). It has been known since 1995 that P01F08 exhibits anticancer activity, but the detailed mechanism remains poorly understood. Only recently, Mayer and colleagues identified a therapeutic window for P01F08, specifically targeting primary malignant cells in a low µM range. To elucidate the mechanistic pathway of cell death induction, we verified and compared its cytotoxicity and apoptosis induction capacity in Ramos and Jurkat lymphoma cells. Moreover, using Jurkat cells overexpressing antiapoptotic Bcl-2, we were able to show that P01F08 induces apoptosis mainly through the intrinsic mitochondrial pathway.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1079
Author(s):  
Yingnan Si ◽  
JiaShiung Guan ◽  
Yuanxin Xu ◽  
Kai Chen ◽  
Seulhee Kim ◽  
...  

Neuroendocrine (NE) cancers arise from cells within the neuroendocrine system. Chemotherapies and endoradiotherapy have been developed, but their clinical efficacy is limited. The objective of this study was to develop a dual-targeted extracellular vesicles (EV)-delivered combined therapies to treat NE cancer. Specifically, we produced EV in stirred-tank bioreactors and surface tagged both anti-somatostatin receptor 2 (SSTR 2) monoclonal antibody (mAb) and anti-C-X-C motif chemokine receptor 4 (CXCR4) mAb to generate mAbs-EV. Both live-cell confocal microscopy imaging and In Vivo Imaging System (IVIS) imaging confirmed that mAbs-EV specifically targeted and accumulated in NE cancer cells and NE tumor xenografts. Then the highly potent natural cytotoxic marine compound verrucarin A (Ver-A) with IC50 of 2.2–2.8 nM and microtubule polymerization inhibitor mertansine (DM1) with IC50 of 3.1–4.2 nM were packed into mAbs-EV. The in vivo maximum tolerated dose study performed in non-tumor-bearing mice indicated minimal systemic toxicity of mAbs-EV-Ver-A/DM1. Finally, the in vivo anticancer efficacy study demonstrated that the SSTR2/CXCR4 dual-targeted EV-Ver-A/DM1 is more effective to inhibit NE tumor growth than the single targeting and single drug. The results from this study could expand the application of EV to targeting deliver the combined potent chemotherapies for cancer treatment.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1007 ◽  
Author(s):  
Gennaro Riccio ◽  
Nadia Ruocco ◽  
Mirko Mutalipassi ◽  
Maria Costantini ◽  
Valerio Zupo ◽  
...  

Oceans cover more than 70 percent of the surface of our planet and are characterized by huge taxonomic and chemical diversity of marine organisms. Several studies have shown that marine organisms produce a variety of compounds, derived from primary or secondary metabolism, which may have antiviral activities. In particular, certain marine metabolites are active towards a plethora of viruses. Multiple mechanisms of action have been found, as well as different targets. This review gives an overview of the marine-derived compounds discovered in the last 10 years. Even if marine organisms produce a wide variety of different compounds, there is only one compound available on the market, Ara-A, and only another one is in phase I clinical trials, named Griffithsin. The recent pandemic emergency caused by SARS-CoV-2, also known as COVID-19, highlights the need to further invest in this field, in order to shed light on marine compound potentiality and discover new drugs from the sea.


2019 ◽  
Vol 51 (5) ◽  
pp. 371-379
Author(s):  
Maryam Hazbavi ◽  
Mansoureh Zarei ◽  
Roghayeh Nazaralivand ◽  
Hojattollah Shahbazian ◽  
Mohsen Cheki

Toxins ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 305 ◽  
Author(s):  
Paula Abal ◽  
M. Carmen Louzao ◽  
Natalia Vilariño ◽  
Mercedes R. Vieytes ◽  
Luis M. Botana

Tetrodotoxin (TTX) is an extremely toxic marine compound produced by different genera of bacteria that can reach humans through ingestion mainly of pufferfish but also of other contaminated fish species, marine gastropods or bivalves. TTX blocks voltage-gated sodium channels inhibiting neurotransmission, which in severe cases triggers cardiorespiratory failure. Although TTX has been responsible for many human intoxications limited toxicological data are available. The recent expansion of TTX from Asian to European waters and diversification of TTX-bearing organisms entail an emerging risk of food poisoning. This study is focused on the acute toxicity assessment of TTX administered to mice by oral gavage following macroscopic and microscopic studies. Necropsy revealed that TTX induced stomach swelling 2 h after administration, even though no ultrastructural alterations were further detected. However, transmission electron microscopy images showed an increase of lipid droplets in hepatocytes, swollen mitochondria in spleens, and alterations of rough endoplasmic reticulum in intestines as hallmarks of the cellular damage. These findings suggested that gastrointestinal effects should be considered when evaluating human TTX poisoning.


Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 234 ◽  
Author(s):  
Yea Seong Ryu ◽  
Pincha Devage Sameera Madushan Fernando ◽  
Kyoung Ah Kang ◽  
Mei Jing Piao ◽  
Ao Xuan Zhen ◽  
...  

In this study, we aimed to illustrate the potential bio-effects of 3-bromo-4,5-dihydroxybenzaldehyde (3-BDB) on the antioxidant/cytoprotective enzyme heme oxygenase-1 (HO-1) in keratinocytes. The antioxidant effects of 3-BDB were examined via reverse transcription PCR, Western blotting, HO-1 activity assay, and immunocytochemistry. Chromatin immunoprecipitation analysis was performed to test for nuclear factor erythroid 2-related factor 2 (Nrf2) binding to the antioxidant response element of the HO-1 promoter. Furthermore, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the cytoprotective effects of 3-BDB were mediated by the activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, Akt) signaling. Moreover, 3-BDB induced the phosphorylation of ERK and Akt, while inhibitors of ERK and Akt abrogated the 3-BDB-enhanced levels of HO-1 and Nrf2. Finally, 3-BDB protected cells from H2O2- and UVB-induced oxidative damage. This 3-BDB-mediated cytoprotection was suppressed by inhibitors of HO-1, ERK, and Akt. The present results indicate that 3-BDB activated Nrf2 signaling cascades in keratinocytes, which was mediated by ERK and Akt, upregulated HO-1, and induced cytoprotective effects against oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document