scholarly journals The STRIPAK component SipC is involved in morphology and cell-fate determination in the nematode-trapping fungus Duddingtonia flagrans

Genetics ◽  
2021 ◽  
Author(s):  
Valentin Wernet ◽  
Jan Wäckerle ◽  
Reinhard Fischer

Abstract The striatin-interacting phosphatase and kinase complex (STRIPAK) is a highly conserved eukaryotic signaling hub involved in the regulation of many cellular processes. In filamentous fungi, STRIPAK controls multicellular development, hyphal fusion, septation and pathogenicity. In this study we analyzed the role of the STRIPAK complex in the nematode-trapping fungus Duddingtonia flagrans which forms three-dimensional, adhesive trapping networks to capture Caenorhabditis elegans. Trap networks consist of several hyphal loops which are morphologically and functionally different from vegetative hyphae. We show that lack of the STRIPAK component SipC (STRIP1/2/HAM-2/PRO22) results in incomplete loop formation and column-like trap structures with elongated compartments. The misshapen or incomplete traps lost their trap identity and continued growth as vegetative hyphae. The same effect was observed in the presence of the actin cytoskeleton drug cytochalasin A. These results could suggest a link between actin and STRIPAK complex functions.

2020 ◽  
Vol 27 ◽  
Author(s):  
Ji-Yeon Lee ◽  
Myoung Hee Kim

: HOX genes belong to the highly conserved homeobox superfamily, responsible for the regulation of various cellular processes that control cell homeostasis, from embryogenesis to carcinogenesis. The abnormal expression of HOX genes is observed in various cancers, including breast cancer; they act as oncogenes or as suppressors of cancer, according to context. In this review, we analyze HOX gene expression patterns in breast cancer and examine their relationship, based on the three-dimensional genome structure of the HOX locus. The presence of non-coding RNAs, embedded within the HOX cluster, and the role of these molecules in breast cancer have been reviewed. We further evaluate the characteristic activity of HOX protein in breast cancer and its therapeutic potential.


1991 ◽  
Vol 115 (5) ◽  
pp. 1267-1274 ◽  
Author(s):  
S Eliott ◽  
P H Vardy ◽  
K L Williams

While the role of myosin II in muscle contraction has been well characterized, less is known about the role of myosin II in non-muscle cells. Recent molecular genetic experiments on Dictyostelium discoideum show that myosin II is necessary for cytokinesis and multicellular development. Here we use immunofluorescence microscopy with monoclonal and polyclonal antimyosin antibodies to visualize myosin II in cells of the multicellular D. discoideum slug. A subpopulation of peripheral and anterior cells label brightly with antimyosin II antibodies, and many of these cells display a polarized intracellular distribution of myosin II. Other cells in the slug label less brightly and their cytoplasm displays a more homogeneous distribution of myosin II. These results provide insight into cell motility within a three-dimensional tissue and they are discussed in relation to the possible roles of myosin II in multicellular development.


2017 ◽  
Vol 63 (4) ◽  
Author(s):  
Magdalena Małgowska

G-quadruplexes are non-canonical secondary structures which may be formed by guanine rich sequences, both in vitro and in living cells. The number of biological functions assigned to these structural motifs has grown rapidly since the discovery of their involvement in the telomere maintenance. Knowledge of the three-dimensional structures of G-quadruplexes plays an important role in understanding their conformational diversity, physiological functions, and in the design of novel drugs targeting G-quadruplexes. For the last decades, structural studies have been mainly focused on the DNA G-quadruplexes. Their RNA counterparts gained an increased interest along with still-emerging recognition of the central role of RNA in multiple cellular processes. In this review we focus on structural properties of RNA G-quadruplexes, based on high-resolution structures, available in RCSB PDB data base and on structural models. In addition, we point out to the current challenges in this field of research.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Sung Hyun Kim ◽  
Mahipal Ganji ◽  
Eugene Kim ◽  
Jaco van der Torre ◽  
Elio Abbondanzieri ◽  
...  

The three-dimensional organization of DNA is increasingly understood to play a decisive role in vital cellular processes. Many studies focus on the role of DNA-packaging proteins, crowding, and confinement in arranging chromatin, but structural information might also be directly encoded in bare DNA itself. Here, we visualize plectonemes (extended intertwined DNA structures formed upon supercoiling) on individual DNA molecules. Remarkably, our experiments show that the DNA sequence directly encodes the structure of supercoiled DNA by pinning plectonemes at specific sequences. We develop a physical model that predicts that sequence-dependent intrinsic curvature is the key determinant of pinning strength and demonstrate this simple model provides very good agreement with the data. Analysis of several prokaryotic genomes indicates that plectonemes localize directly upstream of promoters, which we experimentally confirm for selected promotor sequences. Our findings reveal a hidden code in the genome that helps to spatially organize the chromosomal DNA.


2019 ◽  
Vol 20 (11) ◽  
pp. 2615 ◽  
Author(s):  
Pavan Kumar Puvvula

Long noncoding RNAs (lncRNAs) are a class of transcripts longer than 200 nucleotides with no open reading frame. They play a key role in the regulation of cellular processes such as genome integrity, chromatin organization, gene expression, translation regulation, and signal transduction. Recent studies indicated that lncRNAs are not only dysregulated in different types of diseases but also function as direct effectors or mediators for many pathological symptoms. This review focuses on the current findings of the lncRNAs and their dysregulated signaling pathways in senescence. Different functional mechanisms of lncRNAs and their downstream signaling pathways are integrated to provide a bird’s-eye view of lncRNA networks in senescence. This review not only highlights the role of lncRNAs in cell fate decision but also discusses how several feedback loops are interconnected to execute persistent senescence response. Finally, the significance of lncRNAs in senescence-associated diseases and their therapeutic and diagnostic potentials are highlighted.


1997 ◽  
Vol 8 (2) ◽  
pp. 303-312 ◽  
Author(s):  
S A Louis ◽  
G B Spiegelman ◽  
G Weeks

It has been previously demonstrated that the expression of an activated rasD gene in wild-type Dictyostelium cells results in formation of aggregates with multitips, instead of the normal single tips, and a block in further development. In an attempt to better understand the role of activated RasD development, we examined cell-type-specific gene expression in a strain stably expressing high levels of RasD[G12T]. We found that the expression of prestalk cell-specific genes ecmA and tagB was markedly enhanced, whereas the expression of the prespore cell-specific gene cotC was reduced to very low levels. When the fate of cells in the multitipped aggregate was monitored with an ecmA/lacZ fusion, it appeared that most of the cells eventually adopted prestalk gene expression characteristics. When mixtures of the [G12T]rasD cells and Ax3 cells were induced to differentiate, chimeric pseudoplasmodia were not formed. Thus, although the [G12T]rasD transformant had a marked propensity to form prestalk cells, it could not supply the prestalk cell population when mixed with wild-type cells. Both stalk and spore cell formation occurred in low cell density monolayers of the [G12T]rasD strain, suggesting that at least part of the inhibition of stalk and spore formation during multicellular development involved inhibitory cell interactions within the cell mass. Models for the possible role of rasD in development are discussed.


2013 ◽  
Vol 41 (6) ◽  
pp. 1745-1749 ◽  
Author(s):  
Maitreyi Das ◽  
Fulvia Verde

Cell polarization is fundamental to many cellular processes, including cell differentiation, cell motility and cell fate determination. A key regulatory enzyme in the control of cell morphogenesis is the conserved Rho GTPase Cdc42, which breaks symmetry via self-amplifying positive-feedback mechanisms. Additional mechanisms of control, including competition between different sites of polarized cell growth and time-delayed negative feedback, define a cellular-level system that promotes Cdc42 oscillatory dynamics and modulates activated Cdc42 intracellular distribution.


2019 ◽  
Vol 7 ◽  
Author(s):  
Rui Wang ◽  
Yihui Wang ◽  
Bin Yao ◽  
Tian Hu ◽  
Zhao Li ◽  
...  

Abstract Background Mammary progenitor cells (MPCs) maintain their reproductive potency through life, and their specific microenvironments exert a deterministic control over these cells. MPCs provides one kind of ideal tools for studying engineered microenvironmental influence because of its accessibility and continually undergoes postnatal developmental changes. The aim of our study is to explore the critical role of the engineered sweat gland (SG) microenvironment in reprogramming MPCs into functional SG cells. Methods We have utilized a three-dimensional (3D) SG microenvironment composed of gelatin-alginate hydrogels and components from mouse SG extracellular matrix (SG-ECM) proteins to reroute the differentiation of MPCs to study the functions of this microenvironment. MPCs were encapsulated into the artificial SG microenvironment and were printed into a 3D cell-laden construct. The expression of specific markers at the protein and gene levels was detected after cultured 14 days. Results Compared with the control group, immunofluorescence and gene expression assay demonstrated that MPCs encapsulated in the bioprinted 3D-SG microenvironment could significantly express the functional marker of mouse SG, sodium/potassium channel protein ATP1a1, and tend to express the specific marker of luminal epithelial cells, keratin-8. When the Shh pathway is inhibited, the expression of SG-associated proteins in MPCs under the same induction environment is significantly reduced. Conclusions Our evidence proved the ability of differentiated mouse MPCs to regenerate SG cells by engineered SG microenvironment in vitro and Shh pathway was found to be correlated with the changes in the differentiation. These results provide insights into regeneration of damaged SG by MPCs and the role of the engineered microenvironment in reprogramming cell fate.


2008 ◽  
Vol 415 (3) ◽  
pp. 345-351 ◽  
Author(s):  
Mohammed Abdullahel Amin ◽  
Sachihiro Matsunaga ◽  
Susumu Uchiyama ◽  
Kiichi Fukui

NPM (nucleophosmin; also known as B23) is an abundantly and ubiquitously expressed multifunctional nucleolar phosphoprotein, which is involved in numerous cellular processes, including ribosome biogenesis, protein chaperoning and centrosome duplication; however, the role of NPM in the cell cycle still remains unknown. In the present study, we show dynamic localization of NPM throughout the cell cycle of HeLa cells. Using a combination of RNAi (RNA interference) and three-dimensional microscopy we show that NPM is localized at the chromosome periphery during mitosis. We also demonstrate that depletion of NPM causes distortion of nucleolar structure as expected and leads to unexpected dramatic changes in nuclear morphology with multiple micronuclei formation. The defect in nuclear shape of NPM-depleted cells, which is clearly observed by live-cell imaging, is due to the distortion of cytoskeletal (α-tubulin and β-actin) structure, resulting from the defects in centrosomal microtubule nucleation. These results indicate that NPM is an essential protein not only for the formation of normal nucleolar structure, but also for the maintenance of regular nuclear shape in HeLa cells.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3466
Author(s):  
Galia Maik-Rachline ◽  
Inbal Wortzel ◽  
Rony Seger

The mitogen-activated protein kinase (MAPK) cascades transmit signals from extracellular stimuli to a variety of distinct cellular processes. The MAPKKs in each cascade specifically phosphorylate and activate their cognate MAPKs, indicating that this step funnels various signals into a seemingly linear pathway. Still, the effects of these cascades vary significantly, depending on the identity of the extracellular signals, which gives rise to proper outcomes. Therefore, it is clear that the specificity of the signals transmitted through the cascades is tightly regulated in order to secure the desired cell fate. Indeed, many regulatory components or processes that extend the specificity of the cascades have been identified. Here, we focus on a less discussed mechanism, that is, the role of distinct components in each tier of the cascade in extending the signaling specificity. We cover the role of distinct genes, and the alternatively spliced isoforms of MAPKKs and MAPKs, in the signaling specificity. The alternatively spliced MEK1b and ERK1c, which form an independent signaling route, are used as the main example. Unlike MEK1/2 and ERK1/2, this route’s functions are limited, including mainly the regulation of mitotic Golgi fragmentation. The unique roles of the alternatively spliced isoforms indicate that these components play an essential role in determining the proper cell fate in response to distinct stimulations.


Sign in / Sign up

Export Citation Format

Share Document