scholarly journals The influence of new severe plastic deformation on microstructure, mechanical and corrosion properties of Mg-0.8Mn-0.5Ca alloy

Author(s):  
M. Khani ◽  
G.R. Ebrahimi ◽  
H.R. Ezatpour ◽  
A. Momeni

In this research, the effect of accumulative extrusion bonding (AEB) on the microstructure and mechanical properties of Mg-0.8Mn-0.5Ca biocompatible alloy was investigated. The goal of this research was to develop the mechanical and corrosion properties of Mg-0.8Mn-0.5Ca alloy after ABE process as a novel severe plastic deformation process. The simulation of AEB process showed that the average effective strain per pass for channels with the internal angle of 120? is about 1.93. The average grain size was dramatically decreased from about 448.3 ?m for the homogenized alloy to 1.55 ?m for the 3-pass processed sample. Microstructural observations suggested a combination of continuous, discontinuous and twinning-induced dynamic recrystallization as the major mechanisms of grain refinement. Tensile and compressive strengths were improved from 150 and 205 MPa to 330 and 301 MPa after three passes of AEB, respectively indicating 2 and 1.5 times improvements, respectively. Tensile elongation decreased from 26 % for the homogenized sample to 7.5 % for the 3-pass processed sample due to the severe work-hardening, non-uniform strains and inhomogeneous microstructure produced by ABE process. Corrosion resistance in SBF solution was improved from 1.1 to 14.159 K? Cm2 after three passes of ABE due to the presence of hydroxyapatite formed on the surface of the AEBed samples.

2021 ◽  
Vol 887 ◽  
pp. 229-234
Author(s):  
Viktor V. Ovchinnikov ◽  
Svetlana V. Yakutina ◽  
Nadezhda V. Uchevatkina

The effect of high-dose aluminum implantation on the structural-phase state of the surface layer of titanium alloy VT6 with a fine structure (average grain size 2.3 μm) on the mechanical and corrosion properties has been investigated. It is shown that, as a result of ion irradiation, polyphase implanted layers based on α-titanium grains are formed, containing an intermetallic Ti3Al phase along the grain boundaries of α-titanium. The modified surface layers are characterized by improved mechanical properties and corrosion resistance. The noted effect is enhanced by the use of preliminary helium implantation with a dose of 1.3 × 1017 ion / cm2.


2010 ◽  
Vol 638-642 ◽  
pp. 1934-1939 ◽  
Author(s):  
Y.B. Chun ◽  
S.H. Ahn ◽  
D.H. Shin ◽  
S.K. Hwang

Recent advances in the severe plastic deformation technique have shown that effective refinement of the microstructure can be achieved in pure metals as well as in alloys. Among the various methods of severe plastic deformation, equal channel angular pressing has been the subject of numerous research works. Since the grain refining effect of this technique appears to reach a peak at a level of approximately 200 nm further microstructural changes are sought—deformation at a cryogenic temperature being one of the candidate routes. In the present study, we opted to combine equal channel angular pressing and low temperature plastic deformation to refine the microstructure of commercially pure V. The starting microstructure consisted of equiaxed grains with an average size of 100 micrometers. This microstructure was refined to a 200 nm thick lamellar microstructure by 8 passes of equal channel angular pressing at 350°C. The lamellar thickness was further reduced to 140 nm upon subsequent cryogenic rolling, which resulted in room temperature yield strength of 768 MPa. In the specimens, recrystallization annealed at 850°C, the grain size reached 1000 nm or larger, and the yield strength obeyed the Hall-Petch relationship with that grain size. The tensile elongation value, which was low and insensitive to the grain size in the as-deformed state, increased significantly up to 43% with the recrystallization annealing.


MRS Advances ◽  
2015 ◽  
Vol 1 (58) ◽  
pp. 3865-3870 ◽  
Author(s):  
Shima Sabbaghianrad ◽  
Terence G. Langdon

ABSTRACTA severe plastic deformation (SPD) technique was applied to an Al-7075 alloy reinforced with 10 vol.% Al2O3. This processing method of high-pressure torsion (HPT) was performed at room temperature under a pressure of 6.0 GPa through a total number of up to 20 turns. The metal matrix composite (MMC) showed a significant grain refinement from an initial average grain size of ∼8 μm to ∼300 nm after processing by HPT through 20 turns which led to an increase in the average values of Vickers microhardness at room temperature.


2011 ◽  
Vol 465 ◽  
pp. 330-333
Author(s):  
Kinga Rodak ◽  
Grzegorz Moskal

The evaluation of microstructure and the thermal diffusivity of copper subjected to severe plastic deformation using multi-axial compression was investigated. The investigations were performed on copper (M1E grade) processed to effective strain at range f =1-14.9. The multi- axial compression resulted in an refining structure. The evolution of dislocation structure, misorientation distribution, crystalline size were observed by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipment with electron back scattered diffraction (EBSD) facility. The thermal diffusivity measurements were performed by using the LFA427 apparatus based on the laser-flash method. Subgrain and grain size for f =3.7 reaches about 250 nm and 550 nm respectively. The local recrystallization occur in analyzed microarea especially at f =7.5 and delay the reduction of sub(grain) size. In consequence no more large changes in structure occur during further processing up to the largest strain. The microstructural phenomena have an influence on the thermal parameters. The value of this parameters insignificantly decreased with increasing of accumulated strain.


2005 ◽  
Vol 475-479 ◽  
pp. 133-136 ◽  
Author(s):  
Xin Min Fan ◽  
Bosen Zhou ◽  
Lin Zhu ◽  
Heng Zhi Wang ◽  
Jie Wen Huang

In this paper, the circulation rolling plastic deformation(CRPD) surface nanocrystallization technology is proposed based on the idea that the severe plastic deformation can induce grain refinement. The equipment of CRPD is designed and manufactured. A nanocrystallization surface layer was successfully obtained in a column sample of low carbon steel. The average grain size in the top surface layer is about 18 nm, and gradually increases with the distance from the surface. The hardness increases gradually from about 200HV0.1 in the matrix to about 600HV0.1 in the surface layer.


2013 ◽  
Vol 291-294 ◽  
pp. 2676-2679 ◽  
Author(s):  
Yong Zhi Li ◽  
Xue Fei Du

Severe plastic deformation(SPD)methods have been the subject of intensive investigation for preparing bulk ultrafine-grained materials in recent years. This paper introduces a new severe plastic deformation (SPD) process named as C-TE process which combines the Twist Extrusion with Extrusion against the asymmetric deformation of TE process. and the distribution of effective strain and stress of the sample and the variation of load with time and its influence on the deformation were investigated by computer simulation with Deform-3D software . The results reveal that C-TE process can significantly slow uniform phenomenon,and a sample of homogeneous deformation can be obtained by the improved process.


2010 ◽  
Vol 667-669 ◽  
pp. 397-402 ◽  
Author(s):  
Megumi Kawasaki ◽  
Terence G. Langdon

The processing of metals through the application of severe plastic deformation provides the potential for achieving exceptional grain refinement in bulk solids. Several SPD methods are now available but processing by high-pressure torsion (HPT) has attracted much attention over the last five years. Numerous reports are now available describing the application of HPT to a range of pure metals and simple alloys and excellent grain refinement were achieved using this process with the average grain size often reduced to the nanoscale range. However, in order to make this technique more practical, the nature of the sample characteristics immediately after conventional HPT must be considered in order to understand the fundamental principles of HPT processing. This report examines the procedure with special emphasis on the evolution in hardness homogeneity in both high-purity aluminum and a Zn-22% Al eutectoid alloy processed by HPT.


Sign in / Sign up

Export Citation Format

Share Document