Natural products in targeting Acanthamoeba spp

2021 ◽  
Vol 19 ◽  
Author(s):  
Yassmin Isse Wehelie ◽  
Aishath Leesha Nasih ◽  
Ayaz Anwar ◽  
Ruqaiyyah Siddiqui ◽  
Sutherland Maciver ◽  
...  

: Pathogenic Acanthamoeba is responsible for causing serious eye and fatal brain infections. A successful prognosis remains elusive despite advances in chemotherapeutics and supportive care. Natural products of medicinal value remain a promising source for drug development due to their broad-spectrum antimicrobial activities. Herein, we discuss anti-Acanthamoebic properties of natural products originating from plants, marine, and microbial sources that could be exploited as potential avenue for drug discovery against infections caused by Acanthamoeba.

2020 ◽  
Vol 12 (10) ◽  
pp. 949-959
Author(s):  
Ranju Bansal ◽  
Ranjit Singh

Steroidal pyrazolines constitute an interesting and promising scaffold for drug discovery as they display diverse chemical reactivity and a wide range of biological activities. Literature reports indicate potent anticancer potential of steroidal pyrazolines along with broad-spectrum antimicrobial activities. Strong neuroprotective effects with steroids possessing pyrazoline moiety have also been observed. Among all the therapeutically active steroidal pyrazolines, D-ring-substituted derivatives are highly potent and the least toxic. The current and futuristic research approaches in this area are focused towards the exploration of this promising scaffold to develop molecules with widespread pharmacological activities. This review article mainly covers the synthetic and pharmacological aspects of steroidal pyrazolines, which will assist the medicinal chemists working in this area in their scientific endeavors.


RSC Advances ◽  
2020 ◽  
Vol 10 (57) ◽  
pp. 34959-34976
Author(s):  
Enas Reda Abdelaleem ◽  
Mamdouh Nabil Samy ◽  
Samar Yehia Desoukey ◽  
Miaomiao Liu ◽  
Ronald J. Quinn ◽  
...  

Marine organisms have been considered an interesting target for the discovery of different classes of secondary natural products with wide-ranging biological activities.


Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Tania Keiko Shishido ◽  
Rafael Vicentini Popin ◽  
Jouni Jokela ◽  
Matti Wahlsten ◽  
Marli Fatima Fiore ◽  
...  

Cyanobacteria are photosynthetic organisms that produce a large diversity of natural products with interesting bioactivities for biotechnological and pharmaceutical applications. Cyanobacterial extracts exhibit toxicity towards other microorganisms and cancer cells and, therefore, represent a source of potentially novel natural products for drug discovery. We tested 62 cyanobacterial strains isolated from various Brazilian biomes for antileukemic and antimicrobial activities. Extracts from 39 strains induced selective apoptosis in acute myeloid leukemia (AML) cancer cell lines. Five of these extracts also exhibited antifungal and antibacterial activities. Chemical and dereplication analyses revealed the production of nine known natural products. Natural products possibly responsible for the observed bioactivities and five unknown, chemically related chlorinated compounds present only in Brazilian cyanobacteria were illustrated in a molecular network. Our results provide new information on the vast biosynthetic potential of cyanobacteria isolated from Brazilian environments.


2019 ◽  
Author(s):  
Paul Kelly ◽  
Fatemeh Hadi-Nezhad ◽  
Dennis Liu ◽  
Travis J. Lawrence ◽  
Roger G. Linington ◽  
...  

AbstractThe development of chemotherapies against eukaryotic pathogens is especially challenging because of both the evolutionary conservation of drug targets between host and parasite, and the evolution of strain-dependent drug resistance. There is a strong need for new nontoxic drugs with broad-spectrum activity against trypanosome parasites such as Leishmania and Trypanosoma. A relatively untested approach is to target macromolecular interactions in parasites rather than small molecular interactions, under the hypothesis that the features specifying macromolecular interactions diverge more rapidly through coevolution. We computed tRNA Class-Informative Features in humans and eight clades of trypanosomes, identifying parasite-specific informative features (including base-pairs and base mis-pairs) that are broadly conserved over approximately 250 million years of trypanosome evolution. Validating these observations, we demonstrated biochemically that tRNA:aminoacyl-tRNA synthetase interactions are a promising target for anti-trypanosomal drug discovery. From a marine natural products extract library, we identified several fractions with inhibitory activity toward Leishmania major alanyl-tRNA synthetase (AlaRS) but no activity against the human homolog. These marine natural products extracts showed cross-reactivity towards Trypanosoma cruzi AlaRS indicating the broad-spectrum potential of our network predictions. These findings support a systems biology model in which combination chemotherapies that target multiple tRNA-synthetase interactions should be comparatively less prone to the emergence of resistance than conventional single drug therapies.Author SummaryTrypanosome parasites pose a significant health risk worldwide. Conventional drug development strategies have proven challenging given the high conservation between humans and pathogens, with off-target toxicity being a common problem. Protein synthesis inhibitors have historically been an attractive target for antimicrobial discovery against bacteria, and more recently for eukaryotic pathogens. Here we propose that exploiting pathogen-specific tRNA-synthetase interactions offers the potential for highly targeted drug discovery. To this end, we improved tRNA gene annotations in trypanosome genomes, identified functionally informative trypanosome-specific tRNA features, and showed that these features are highly conserved over approximately 250 million years of trypanosome evolution. Highlighting the species-specific and broad-spectrum potential of our approach, we identified natural product inhibitors against the parasite translational machinery that have no effect on the homologous human enzyme.


2018 ◽  
Vol 25 (2) ◽  
pp. 186-207 ◽  
Author(s):  
Georgios Daletos ◽  
Weaam Ebrahim ◽  
Elena Ancheeva ◽  
Mona El-Neketi ◽  
Weiguo Song ◽  
...  

Background: Over the last two decades, deep-sea-derived fungi are considered to be a new source of pharmacologically active secondary metabolites for drug discovery mainly based on the underlying assumption that the uniqueness of the deep sea will give rise to equally unprecedented natural products. Indeed, up to now over 200 new metabolites have been identified from deep-sea fungi, which is in support of the statement made above. Results: This review summarizes the new and/or bioactive compounds reported from deepsea- derived fungi in the last six years (2010 – October 2016) and critically evaluates whether the data published so far really support the notion that these fungi are a promising source of new bioactive chemical entities.


2017 ◽  
Vol II (I) ◽  
pp. 34-43
Author(s):  
Parniya Akbar Ali ◽  
Farah Hanif ◽  
Hosna Nettour ◽  
Mubashar Rehman

New drugs are mostly obtained from Natural sources. The traditional and ethic medicines have provided evidence on the therapeutic properties and resulted in some distinguished drug discovery of natural products. The microorganisms and the endogenous active materials from human or animal have also become a significant approach to the discovery of a drug. Bioinformatics and artificial intelligence have facilitated the study and development of products. For discovery of natural products different software have been used. Different computational software needed in the future for the predicting features in new drug development, for instance pharmacokinetic and pharmacodynamics, in drug development lead positive impact. This review focus on natural product drug discovery and uses innovative strategies and techniques as a part of discovery of drugs from natural products.


Author(s):  
Senyo K. Botchie ◽  
Andrew G. Mtewa ◽  
Irene Ayi

The overwhelming resistance to current drugs and the exhaustion of drug development interventions, as well as synthetic libraries, have compelled researchers to resort to the use of novel drug candidates derived from natural products. Cryptosporidium, the causative organism of Cryptosporidiosis, is no exception. The diarrhea-causing parasite is known to be the leading cause of deaths in children below age 5 in developing countries like Ghana and second to rotavirus as the causative agent for diarrhea in newborn calves and infants. Currently, the only FDA approved drug for the treatment of Cryptosporidiosis is Nitazoxanide. It is, therefore, needful to develop novel alternative candidates as it could aid in the decrease in child mortality and malnutrition in developing countries. Even though there have been significant limitations into anti-cryptosporidial drug development in vitro and in vivo, essential advancements are being made of which this article addresses the need for research into natural products. Some studies outlined in this paper has stated potential plant extracts showing anti-cryptosporidiosis efficacy. With the wealth of medicinal plant products and Cryptosporidium in vitro culture expertise available in our labs at Noguchi Memorial Institute for Medical research we are certain of making potential significant strides in the world of natural product Cryptosporidium drug discovery in Africa.


Author(s):  
jie yang ◽  
Qingzheng Zhu ◽  
Feng Xu ◽  
Ming Yang ◽  
Hechao Du ◽  
...  

Abstract: Bacillus subtilis fmb60, which has broad-spectrum antimicrobial activities was isolated from plant straw compost. A hybrid NRPS/PKS cluster was screened from the genome. Sixteen secondary metabolites produced by the gene cluster were isolated and identified using LC-HRMS and NMR. Three lipoamides D–F (1-3) and two amicoumacin derivatives, amicoumacins D, E (4, 5), were identified, and are reported here for the first time. Lipoamides D–F exhibited strong antibacterial activities against harmful foodborne bacteria, with the MIC ranging from 6.25 to 25 µg/mL. Amicoumacin E scavenged 38.8% of ABTS+ radicals at 1 mg/mL. Direct cloning and heterologous expression of the NRPS/PKS and ace gene cluster identified its importance for the biosynthesis of amicoumacins. This study demonstrated that there is a high potential for biocontrol utilization of B. subtilis fmb60, and genome mining for clusters of secondary metabolites of B. subtilis fmb60 has revealed a greater biosynthetic potential for the production of novel natural products than previously anticipated.


Sign in / Sign up

Export Citation Format

Share Document