ferroan dolomite
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 1)

Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 797
Author(s):  
Bradley Cave ◽  
Richard Lilly ◽  
Wei Hong

High-tech metals including Ge, Ga and In are often sourced as by-products from a range of ore minerals, including sphalerite from Zn-Pb deposits. The Hilton Zn-Pb (Ag) deposit in the Mount Isa Inlier, Queensland, contains six textural varieties of sphalerite that have formed through a diverse range of processes with variable co-crystallising sulphides. This textural complexity provides a unique opportunity to examine the effects of co-crystallising sulphides and chemical remobilisation on the trace element geochemistry of sphalerite. Early sphalerite (sph-1) is stratabound and coeval with pyrrhotite, pyrite and galena. Disseminated sphalerite (sph-2) occurs as isolated fine-grained laths rarely associated with co-crystallising sulphides and represents an alteration selvage accompanying the precipitation of early stratabound sphalerite (sph-1). Sphalerite (sph-3) occurs in early ferroan-dolomite veins and formed from the chemical remobilisation of stratabound sphalerite (sph-1) during brittle fracturing and interstitial fluid flow. This generation of veins terminate at the interface, and occurs within clasts of the paragenetically later sphalerite-dominated breccias (sph-4). Regions of high-grade Cu (>2%) mineralisation contain a late generation of sphalerite (sph-5), which formed from the recrystallisation of breccia-type sphalerite (sph-4) during the infiltration of a paragenetically late Cu- and Pb-rich fluid. Late ferroan-dolomite veins crosscut all previous stages of mineralisation and also contain chemically remobilised sphalerite (sph-6). Major and trace elements including Fe, Co, In, Sn, Sb, Ag and Tl are depleted in sphalerite associated with abundant co-crystallised neighbouring sulphides (e.g., pyrite, pyrrhotite, galena and chalcopyrite) relative to sphalerite associated with minor to no co-crystallising sulphides. This depletion is attributed to the incorporation of the trace elements into the competing sulphide minerals. Chemically remobilised sphalerite is enriched in Zn, Cd, Ge, Ga and Sn, and depleted in Fe, Tl, Co, Bi and occasionally Ag, Sb and Mn relative to the primary minerals. This is attributed to the higher mobility of Zn, Ge, Ga and Sn relative to Fe and Co during the chemical remobilisation process, coupled with the effect of co-crystallising with galena and ferroan-dolomite. Results from this study indicate that the consideration of co-crystallising sulphides and post-depositional processes are important in understanding the trace element composition of sphalerite on both a microscopic and deposit-scale, and has implications for a range of Zn-Pb deposits worldwide.


2020 ◽  
Vol 8 (3) ◽  
pp. SM83-SM101
Author(s):  
Yongwang Zhang ◽  
Feng Li

Authigenic carbonate cement is one of the most abundant diagenetic minerals in sandstone reservoirs. Determining its origin and distribution may provide useful information for understanding the sandstone reservoir quality. In this study, we report results from a suite of analytical techniques to investigate the origin and evolution of carbonate cements in the third member of the Shahejie Formation in the Bohai Bay Basin. Our data indicate that the carbonate cements mainly occur in three phases: the early-phase calcite, late-phase ferroan calcite, and late-phase ferroan dolomite and/or ankerite. The early-phase calcites show depleted δ18O of the early-phase calcite (−11.8% to −7.8%), suggesting an 18O-depleted fluid origin from the mixing between lacustrine and meteoric waters. They were precipitated earlier than the quartz overgrowth at 40°C–63°C based on the oxygen isotope. The late-phase calcites were precipitated at 70°C–115°C, and they originated from water-rock interaction modified pore water at the same time or later than feldspar leaching. They show a lower average δ13C value (1.27%) than the early-phase calcite (1.65%), indicating that the interbedded shales within the sandstones most likely provided the required components for the precipitation of the late-phase calcite. Also, some Fe2+ was released during the organic acid release and then precipitated the late-phase ferroan calcites. The late-phase ferroan dolomite and/or ankerite were precipitated at 90°C–137°C in a deep diagenetic condition. They show depleted δ13C values (mean [Formula: see text]), and the carbons were mainly sourced from the thermal decarboxylation of organic matter and lacustrine carbonate. The early-phase calcite inhibits compaction while filling the pores, and the dissolution of ferroan calcite cements was the main reason for the development of secondary pores in the sandstone reservoirs. The late-phase ankerite reduces the reservoir porosity.


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 413 ◽  
Author(s):  
Fan Xu ◽  
Xuelian You ◽  
Qing Li ◽  
Yi Liu

Microbes can mediate the precipitation of primary dolomite under surface conditions. Meanwhile, primary dolomite mediated by microbes often contains more Fe2+ than standard dolomite in modern microbial culture experiments. Ferroan dolomite and ankerite have been regarded as secondary products. This paper reviews the process and possible mechanisms of microbial mediated precipitation of primary ferroan dolomite and/or ankerite. In the microbial geochemical Fe cycle, many dissimilatory iron-reducing bacteria (DIRB), sulfate-reducing bacteria (SRB), and methanogens can reduce Fe3+ to Fe2+, while SRB and methanogens can also promote the precipitation of primary dolomite. There are an oxygen respiration zone (ORZ), an iron reduction zone (IRZ), a sulfate reduction zone (SRZ), and a methanogenesis zone (MZ) from top to bottom in the muddy sediment diagenesis zone. DIRB in IRZ provide the lower section with Fe2+, which composes many enzymes and proteins to participate in metabolic processes of SRB and methanogens. Lastly, heterogeneous nucleation of ferroan dolomite on extracellular polymeric substances (EPS) and cell surfaces is mediated by SRB and methanogens. Exploring the origin of microbial ferroan dolomite may help to solve the “dolomite problem”.


2019 ◽  
Vol 56 (1) ◽  
pp. 45-67 ◽  
Author(s):  
Clayton Schultz ◽  
Michael Hofmann

The Devonian-Mississippian Sappington Formation in the Bridger Range, Montana was investigated for its paragenetic sequence and thermal history. These results were used to establish a burial history for the area and compared to data from nearby oil and gas wells. The paragenetic evolution of the Sappington includes early diagenetic feldspar dissolution, formation of quartz overgrowths, and illite precipitation during early diagenesis at temperatures < 50 °C. Subsequent burial diagenesis resulted in the precipitation of non-ferroan and ferroan dolomite, followed by calcite cementation and replacement, pyrite replacement, and hydrocarbon generation and expulsion at temperatures > 130 °C. Devonian formations were the source of the non-ferroan dolomite cement and began precipitating in the latest Mississippian. Subsequent growth of ferroan dolomite resulted from clay transformation reactions in the Upper and Lower Sappington Members and was initiated during rapid burial in the late Cretaceous. The Bridger Range and the adjacent Western Crazy Mountain Basin underwent similar Paleozoic and Mesozoic burial histories. Vastly different Cenozoic burial histories resulted from movement along the Cross Range and Pass thrusts that caused the Bridger Range to begin uplift prior to the cessation of deposition of the Livingston Group in the early Paleocene. The discrepancies in burial history caused the Sappington Formation to reach a maximum temperature of ~135 °C in the Bridger Range and ~230 °C in the western Crazy Mountain Basin.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
K. Blomme ◽  
S. J. Fowler ◽  
P. Bachaud ◽  
F. H. Nader ◽  
A. Michel ◽  
...  

Numerous publications address the petrogenesis of the partially dolomitized Latemar carbonate platform, Italy. A common factor is interpretation of geochemical data in terms of heating via regional igneous activity that provided kinetically favorable conditions for replacement dolomitization. New field, petrographic, XRD, and geochemical data demonstrate a spatial, temporal, and geochemical link between replacement dolomite and local mafic igneous dikes that pervasively intrude the platform. Dikes are dominated by strongly altered plagioclase and clinopyroxene. Significantly, where ferroan dolomite is present, it borders dikes. We hypothesize that seawater interacted with mafic minerals, causing Fe enrichment in the fluid that subsequently participated in dolomitization. This hypothesis was tested numerically through thermodynamic (MELTS, Arxim-GEM) and reactive flow (Arxim-LMA) simulations. Results confirm that seawater becomes Fe-enriched during interaction with clinopyroxene (diopside-hedenbergite) and plagioclase (anorthite-albite-orthoclase) solid solutions. Reaction of modified seawater with limestone causes ferroan and nonferroan replacement dolomitization. Dolomite quantities are strongly influenced by temperature. At 40 to 80°C, ferroan dolomite proportions decrease with increasing temperature, indicating that Latemar dolomitization likely occurred at lower temperatures. This relationship between igneous dikes and dolomitization may have general significance due to the widespread association of carbonates with rifting-related igneous environments.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jin Lai ◽  
Guiwen Wang ◽  
Jing Chen ◽  
Shuchen Wang ◽  
Zhenglong Zhou ◽  
...  

Two generations of carbonate cement as Type I (microcrystalline calcite and dolomite) and Type II (mainly Fe-calcite and Fe-dolomite) are recognized in Chang 8 sandstones, Ordos basin. Carbonate cement in Chang 8 sandstones is closely related to the dissolved carbon from thermal maturation of organic matters. Carbonate cement in the loosely packed framework grains precipitated shortly after deposition, and late-stage ferroan calcite and ferroan dolomite formed with progressive burial. The early diagenetic carbonate cement is partially to completely replaced by late-stage ferroan calcite and ferroan dolomite. Carbonate cement is much more commonly observed in sand bodies adjacent to Chang 7 source rocks. With increasing distance from the Chang 7 oil layers, the carbonate cement content gradually decreases. However, some tight carbonate cemented zones also occur at the sandstone-mudstone interfaces. Dissolution of Ca-feldspars by organic acids-rich fluids, together with clay mineral transformations such as illitization of smectite, would provide Ca2+ and Mg2+ ions for carbonate cementation. Organic acids and CO2 rich fluids would charge into the reservoirs with the hydrocarbons, and when the CO2 and acids were buffered by the framework grain dissolution, carbonate cement would precipitate with a decrease in CO2 concentration.


2012 ◽  
Vol 76 (2) ◽  
pp. 357-376 ◽  
Author(s):  
A. E. Brady ◽  
K. R. Moore

AbstractThe magma source and evolution of a zoned breccia pipe on the southern Beara Peninsula in southwest Ireland are investigated using the geochemistry of the host mineral assemblages. The clast-poor inner zone of the pipe has a magnesium-rich silicocarbonatite whole-rock composition (14.30 wt.% MgO; 31.80 wt.% SiO2). The silicocarbonatite has retained an ultimate mantle source 13C isotopic composition after metamorphism, consistent with the presence of mantle debris. The silicocarbonatite is Cr-, Ni- and Co-rich (847 ppm, 611 ppm and 60 ppm, respectively) but REE depleted compared with volcanic dolomite carbonatites worldwide. The mineral assemblage consists of Sr-rich (0.55 wt.% SrO) ferroan dolomite, magnesite and pseudomorphs of chlorite after phlogopite, consistent with derivation from a carbonated and hydrated mantle. However, chrome spinel crystals (≤4 40.14 wt.% Cr2O3) are compositionally indistinguishable from unmetasomatized spinel macrocrysts in kimberlites. The silicocarbonatite is inferred to represent a magma produced by partial melting of metasomatized mantle at physical conditions between those in which primary dolomite carbonatite and ultramafic magmas of high-pressure origin form. The primary silicocarbonatite magma ascended and sampled mantle material in a manner similar to kimberlite, and subsequently lost volatile components due to release of metasomatic fluids and later metamorphism.


Sign in / Sign up

Export Citation Format

Share Document