regulate plant development
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 22 (11) ◽  
pp. 5962
Author(s):  
Lei Zhu ◽  
Xue-Qin Zhang ◽  
De Ye ◽  
Li-Qun Chen

The plant-specific mildew resistance locus O (MLO) proteins, which contain seven transmembrane domains and a conserved calmodulin-binding domain, play important roles in many plant developmental processes. However, their mechanisms that regulate plant development remain unclear. Here, we report the functional characterization of the MLO4 protein in Arabidopsis roots. The MLO4 was identified as interacting with CML12 in a screening for the interaction between the proteins from Arabidopsis MLO and calmodulin/calmodulin-like (CaM/CML) families using yeast two hybrid (Y2H) assays. Then, the interaction between MLO4 and CML12 was further verified by Luciferase Complementation Imaging (LCI) and Bimolecular Fluorescence Complementation (BiFC) assays. Genetic analysis showed that the mlo4, cml12, and mlo4 cml12 mutants displayed similar defects in root gravity response. These results imply that the MLO4 might play an important role in root gravity response through interaction with CML12. Moreover, our results also demonstrated that the interaction between the MLO and CaM/CML families might be conservative.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Yu-Chun Hsiao ◽  
Masashi Yamada

Peptide hormones play pivotal roles in many physiological processes through coordinating developmental and environmental cues among different cells. Peptide hormones are recognized by their receptors that convey signals to downstream targets and interact with multiple pathways to fine-tune plant growth. Extensive research has illustrated the mechanisms of peptides in shoots but functional studies of peptides in roots are scarce. Reactive oxygen species (ROS) are known to be involved in stress-related events. However, recent studies have shown that they are also associated with many processes that regulate plant development. Here, we focus on recent advances in understanding the relationships between peptide hormones and their receptors during root growth including outlines of how ROS are integrated with these networks.


2020 ◽  
Vol 63 (11) ◽  
pp. 1768-1770
Author(s):  
Baoyuan Qu ◽  
Yuan Qin ◽  
Yang Bai

2020 ◽  
Author(s):  
Hangyuan Cheng ◽  
Wei Wang ◽  
Muyu Yang ◽  
Yuyi Zhou

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Monica Pia Caggiano ◽  
Xiulian Yu ◽  
Neha Bhatia ◽  
André Larsson ◽  
Hasthi Ram ◽  
...  

In plants the dorsoventral boundary of leaves defines an axis of symmetry through the centre of the organ separating the top (dorsal) and bottom (ventral) tissues. Although the positioning of this boundary is critical for leaf morphogenesis, how the boundary is established and how it influences development remains unclear. Using live-imaging and perturbation experiments we show that leaf orientation, morphology and position are pre-patterned by HD-ZIPIII and KAN gene expression in the shoot, leading to a model in which dorsoventral genes coordinate to regulate plant development by localizing auxin response between their expression domains. However we also find that auxin levels feedback on dorsoventral patterning by spatially organizing HD-ZIPIII and KAN expression in the shoot periphery. By demonstrating that the regulation of these genes by auxin also governs their response to wounds, our results also provide a parsimonious explanation for the influence of wounds on leaf dorsoventrality.


2017 ◽  
Author(s):  
Monica Pia Caggiano ◽  
Xiulian Yu ◽  
Neha Bhatia ◽  
André Larsson ◽  
Hasthi Ram ◽  
...  

AbstractIn plants the dorsoventral boundary of leaves defines an axis of symmetry through the centre of the organ separating the top (dorsal) and bottom (ventral) tissues. Although the positioning of this boundary is critical for leaf morphogenesis, how the boundary is established and how it influences development remains unclear. Using live-imaging and perturbation experiments we show that leaf orientation, morphology and position are pre-patterned by HD-ZIPIII and KAN gene expression in the shoot, leading to a model in which dorsoventral genes coordinate to regulate plant development by localizing auxin response between their expression domains. However we also find that auxin levels feedback on dorsoventral patterning by spatially organizing HD-ZIPIII and KAN expression in the shoot periphery. By demonstrating that the regulation of these genes by auxin also governs their response to wounds, our results also provide a parsimonious explanation for the influence of wounds on leaf dorsoventrality.


2014 ◽  
Vol 24 (10) ◽  
pp. R475-R483 ◽  
Author(s):  
Arun Sampathkumar ◽  
An Yan ◽  
Pawel Krupinski ◽  
Elliot M. Meyerowitz

Sign in / Sign up

Export Citation Format

Share Document