scholarly journals Acaricidal activity of Foeniculum vulgare against Rhipicephalus annulatus is mainly dependent on its constituent from trans-anethone

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260172
Author(s):  
Shawky M. Aboelhadid ◽  
Waleed M. Arafa ◽  
Abdel-Azeem S. Abdel-Baki ◽  
Atalay Sokmen ◽  
Saleh Al-Quraishy ◽  
...  

Globally, the economic losses due to hard ticks infestation and the control of the associated diseases have been calculated at USD $13.9–18.7 billion per year. The economic impact is related to its direct damage to the skins, blood loss, anemia, severe immunological reactions and indirect losses that related to the effects of hemoparasites, cost of treatment for clinical cases and expenses incurred in the control of ticks. The current study evaluated the acaricidal activities of fennel Foeniculum vulgare essential oil and its main components; trans-anethole and fenchone; against R. annulatus. GC–MS analysis revealed that this oil contained 16 components representing 99.9% of the total identified compounds with E-anethole being the predominant component(64.29%), followed by fenchone (9.94%). The fennel oil and trans-anethole showed significant acaricidal activities. The LC50 of the fennel oil was attained at concentrations of 12.96% for adult ticks and 1.75% for tick larvae meanwhile the LC50 of trans-anethole was reached at concentrations of 2.36% for adult tick and 0.56% for tick larvae. On the contrary, fenchone showed no any significant adulticidal activities and its LC50 attained at a concentration of 9.11% for tick larvae. Regarding repellence activities, trans-anethole achieved 100% repellency at the concentration of 10% while fennel showed 86% repellency at the same concentration. Fenchone showed no repellency effect. Treatment of larvae with fennel, trans-anethole, and fenchone LC50 concentrations significantly inhibited the acetylcholinesterase activity. Meanwhile, glutathione s-transferase activity was significantly decreased in fennel treated larvae but no significant effect was found in the larvae of trans-anethole and fenchone groups. These results indicate that the acaricide effect of fennel oil may attributed to its high content of trans-anethole. This was supported by potent adulticidal, larvicidal, and repellency effects of trans-anethole against Rhipeciphalus annulatus tick and therefore it could be included in the list of acaricide of plant origin.

2010 ◽  
Vol 5 (2) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Maria Graça Miguel ◽  
Cláudia Cruz ◽  
Leonor Faleiro ◽  
Mariana T. F. Simões ◽  
Ana Cristina Figueiredo ◽  
...  

The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, 1 h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), α-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity >50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 649
Author(s):  
Marco Capolupo ◽  
Paola Valbonesi ◽  
Elena Fabbri

The ocean contamination caused by micro- and nano-sized plastics is a matter of increasing concern regarding their potential effects on marine organisms. This study compared the effects of a 21-day exposure to 1.5, 15, and 150 ng/L of polystyrene microplastics (PS-MP, 3-µm) and nanoplastics (PS-NP, 50-nm) on a suite of biomarkers measured in the Mediterranean mussel Mytilus galloprovincialis. Endpoints encompassed immunological/lysosomal responses, oxidative stress/detoxification parameters, and neurotoxicological markers. Compared to PS-MP, PS-NP induced higher effects on lysosomal parameters of general stress. Exposures to both particle sizes increased lipid peroxidation and catalase activity in gills; PS-NP elicited greater effects on the phase-II metabolism enzyme glutathione S-transferase and on lysozyme activity, while only PS-MP inhibited the hemocyte phagocytosis, suggesting a major role of PS particle size in modulating immunological/detoxification pathways. A decreased acetylcholinesterase activity was induced by PS-NP, indicating their potential to impair neurological functions in mussels. Biomarker data integration in the Mussel Expert System identified an overall greater health status alteration in mussels exposed to PS-NP compared to PS-MP. This study shows that increasing concentrations of nanoplastics may induce higher effects than microplastics on the mussel’s lysosomal, metabolic, and neurological functions, eventually resulting in a greater impact on their overall fitness.


1991 ◽  
Vol 46 (9-10) ◽  
pp. 850-855 ◽  
Author(s):  
John V. Dean ◽  
John W. Gronwald ◽  
Michael P. Anderson

Abstract Fast protein liquid chromatography (anion exchange) was used to separate glutathione S-transferase isozymes in nontreated etiolated maize shoots and those treated with the herbi­cide safener CGA -1542814-(dichloroacetyl)-3,4-dihydro-3-methyl-2 H-1 ,4-benzoxazine. Non­treated shoots contained isozymes active with the following substrates: trans-cinnamic acid (1 isozyme), atrazine (3 isozymes), 1-chloro-2,4-dinitrobenzene (1 isozyme), metolachlor (2 isozymes) and the sulfoxide derivative of S-ethyl dipropylcarbamothioate (2 isozymes). Pre­treatment of shoots with the safener CGA -154281 (1 μM) had no effect on the activity of the isozymes selective for trans-cinnamic acid and atrazine but increased the activity of the constitutively-expressed isozymes that exhibit activity with 1-chloro-2,4-dinitrobenzene, metola­chlor and the sulfoxide derivative of S-ethyl dipropylcarbamothioate. The safener pretreat­ment also caused the appearance of one new isozyme active with 1-chloro-2,4-dinitrobenzene and one new isozyme active with metolachlor. The results illustrate the complexity of gluta­thione S-transferase activity in etiolated maize shoots, and the selective enhancement of gluta­thione S-transferase isozymes by the safener CGA -154281.


1989 ◽  
Vol 264 (3) ◽  
pp. 737-744 ◽  
Author(s):  
P Steinberg ◽  
H Schramm ◽  
L Schladt ◽  
L W Robertson ◽  
H Thomas ◽  
...  

The distribution and inducibility of cytosolic glutathione S-transferase (EC 2.5.1.18) and glutathione peroxidase (EC 1.11.1.19) activities in rat liver parenchymal, Kupffer and endothelial cells were studied. In untreated rats glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene and 4-hydroxynon-2-trans-enal as substrates was 1.7-2.2-fold higher in parenchymal cells than in Kupffer and endothelial cells, whereas total, selenium-dependent and non-selenium-dependent glutathione peroxidase activities were similar in all three cell types. Glutathione S-transferase isoenzymes in parenchymal and non-parenchymal cells isolated from untreated rats were separated by chromatofocusing in an f.p.l.c. system: all glutathione S-transferase isoenzymes observed in the sinusoidal lining cells were also detected in the parenchymal cells, whereas Kupffer and endothelial cells lacked several glutathione S-transferase isoenzymes present in parenchymal cells. At 5 days after administration of Arocolor 1254 glutathione S-transferase activity was only enhanced in parenchymal cells; furthermore, selenium-dependent glutathione peroxidase activity decreased in parenchymal and non-parenchymal cells. At 13 days after a single injection of Aroclor 1254 a strong induction of glutathione S-transferase had taken place in all three cell types, whereas selenium-dependent glutathione peroxidase activity remained unchanged (endothelial cells) or was depressed (parenchymal and Kupffer cells). Hence these results clearly establish that glutathione S-transferase and glutathione peroxidase are differentially regulated in rat liver parenchymal as well as non-parenchymal cells. The presence of glutathione peroxidase and several glutathione S-transferase isoenzymes capable of detoxifying a variety of compounds in Kupffer and endothelial cells might be crucial to protect the liver from damage by potentially hepatotoxic substances.


1978 ◽  
Vol 171 (1) ◽  
pp. 165-175 ◽  
Author(s):  
M A Ferenczi ◽  
E Homsher ◽  
R M Simmons ◽  
D R Trentham

The Mg2+-dependent ATPase (adenosine 5′-triphosphatase) mechanism of myosin and subfragment 1 prepared from frog leg muscle was investigated by transient kinetic technique. The results show that in general terms the mechanism is similar to that of the rabbit skeletal-muscle myosin ATPase. During subfragment-1 ATPase activity at 0-5 degrees C pH 7.0 and I0.15, the predominant component of the steady-state intermediate is a subfragment-1-products complex (E.ADP.Pi). Binary subfragment-1-ATP (E.ATP) and subfragment-1-ADP (E.ADP) complexes are the other main components of the steady-state intermediate, the relative concentrations of the three components E.ATP, E.ADP.Pi and E.ADP being 5.5:92.5:2.0 respectively. The frog myosin ATPase mechanism is distinguished from that of the rabbit at 0-5 degrees C by the low steady-state concentrations of E.ATP and E.ADP relative to that of E.ADP.Pi and can be described by: E + ATP k' + 1 in equilibrium k' − 1 E.ATP k' + 2 in equilibrium k' − 2 E.ADP.Pi k' + 3 in equilibrium k' − 3 E.ADP + Pi k' + 4 in equilibrium k' − 4 E + ADP. In the above conditions successive forward rate constants have values: k' + 1, 1.1 × 10(5)M-1.S-1; k' + 2 greater than 5s-1; k' + 3, 0.011 s-1; k' + 4, 0.5 s-1; k'-1 is probably less than 0.006s-1. The observed second-order rate constants of the association of actin to subfragment 1 and of ATP-induced dissociation of the actin-subfragment-1 complex are 5.5 × 10(4) M-1.S-1 and 7.4 × 10(5) M-1.S-1 respectively at 2-5 degrees C and pH 7.0. The physiological implications of these results are discussed.


1997 ◽  
Vol 31 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Galal E. M. D. Ghazaly ◽  
Madeha M. Zakahary ◽  
Mohamed A. A. El-aziz ◽  
Ahmed A. E. M. Mahmoud ◽  
Pablo Carretero ◽  
...  

Biomics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 20-26
Author(s):  
D.R. Maslennikova ◽  
F.M. Shakirova

The study carried out a comparative analysis of the effect of 24 epibrassinolide (EB) and 6-benzylaminopurine (BAP) on the growth and state of the main components of the glutathione system in the roots of wheat seedlings under the action of 2% NaCl, which for the first time revealed the ability of these phytohormones to similarly stabilize stress-induced decrease GSH / GSSG ratio, positively regulate the activity of glutathione reductase and glutathione-S-transferase. A comparable level of protective effect of BAP and EB on root length was revealed. The data obtained indicate that endogenous cytokinins may play the role of hormonal intermediates in the implementation of the protective.


2015 ◽  
Vol 10 (3) ◽  
pp. 117-124
Author(s):  
Kuldeep Kaushik ◽  
Pawan Kumar Mittal ◽  
Natwar Raj Kalla

Sign in / Sign up

Export Citation Format

Share Document