scholarly journals Effect of Time and Temperature on Biodiesel Production using Melon (Cucumeropsismannii), Groundnut (Arachis hypogea) and Soya bean (Glycine max)

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ugochukwu Onyenze ◽  
Jude Chibuzo Igwe ◽  
Christopher Uchechukwu Sonde ◽  
P. E. Udo ◽  
U. A Ogwuda

This study investigated the optimum condition for biodiesel production at varying temperatures and time using melon (Cucumeropsismannii), groundnut (Arachis hypogea), and soya bean (Glycine max) seed oils. Extraction of oil from Cucumeropsismannii, Arachis hypogea, and Glycine max was accomplished using n-hexane (67.7-69.2oC) as the solvent. Biodiesel was produced from the three different seed oils at varying temperatures of 65oC, 55oC, and 45oC and also at the varied time of 60mins, 50mins and 40mins. The best percentage yield was obtained at a temperature of 65oC and a period of 60 minutes. At 40 min, the process was not complete. A good number of the transesterification process was completed at 50 mins. Also, at the lower temperature of 45oC, the method was not complete. The maximum % yield of the biodiesel obtained was 90.83% for Glycine max, 78.00% for Arachis hypogea, and 77.58% for Cucumeropsismannii seed oils. Fuel properties such as kinematic viscosity, pour point, carbon residue, cloud point, water content, flash point, cetane index, and sulfated ash were examined on the biodiesel. The flash point, carbon residue, kinematic viscosity, and water content were within the standard specified for petrol diesel. Cloud point and pour points of this product were found to be greater than that of petrol diesel. The cetane index was lower than the standard specified for petrol diesel and the three samples contained no sulfated ash. Therefore, melon (Cucumeropsismannii), groundnut (Arachis hypogea), and soya bean (Glycine max) are good alternatives to biodiesel production.  Copyright (c) The Authors

2021 ◽  
Vol 25 (4) ◽  
pp. 537-542
Author(s):  
C.A. Odega ◽  
G.T. Anguruwa ◽  
C.O. Fakorede

Biodiesel is a fuel produced from renewable resources; it is a clean alternative fuel, which has drawn the attention of energy researchers for the last two decades due to the disturbing effect of climate change caused by diesel fuel. This paper focuses on showcasing the qualities of biodiesel produced from used vegetable oil and the positive impact on the alarming change in climate today. This paper presents an experimental investigation on production of biodiesel from used vegetable oil (UVO) gotten from a road side bean cake (akara) seller. The oil that was intended to be thrown out was de-odoured and filtered to remove impurities. The filtered oil was then used for biodiesel production and characterized with physical and fuel properties such as density, viscosity, cloud point, refractive index, specific gravity, ash content, moisture content, flash point and cloud point. The results obtained were afterwards compared to ASTM (American Society for Testing and Materials) and EN (Europe’s) international standards. Two biodiesels samples were produced at different temperatures but the same timings. The biodiesel were produced at 700C at 40mins (biodiesel A) and 1000C at 40mins (biodiesel B) with values of specific gravity (0.98 kg/m3; 0.90 kg/m3), density (936kg/m3; 882kg/m3), kinematic viscosity (1.5mm/s2; 5.5 mm/s2), cloud point (150C; 20C), flash point (2600C min; 2000C min), moisture content (0.07%; 0.04%), refractive index (1.4609; 1.4398) and ash point (0.24%; 0.01%) respectively. On comparison, biodiesel A couldn’t match up to the international standards while biodiesel matched up to the standards given.


Author(s):  
Sarafadeen Olateju Kareem ◽  
Esther Imole Falokun ◽  
Saka Adebayo Balogun ◽  
Oluwaseyi A. Akinloye ◽  
Sunday Osaizua Omeike

Abstract Background Lipase is an important microbial enzyme and biocatalyst in biodiesel production. The study investigated fuel properties of biodiesel produced from palm oil (PO) using lipase immobilized on Irvingia gabonensis and calcium alginate. Results Biodiesel yield from PO using free and immobilized lipases was highest at 35 °C and pH 7, with product yield using calcium alginate-immobilized lipase, CAIL (94.42, 96.9%) higher than using Irvingia gabonensis-immobilized lipase, IGIL (92.54, 95.8%). Biodiesel produced using immobilized lipases had similar pour point, cloud point, and kinematic viscosity, and they possessed improved fuel properties compared to free lipase biodiesel in terms of densities at 15 °C and flash point. Pour points, flash point, and kinematic viscosity of biodiesel produced using CAIL and IGIL met American and European Standards but density at 15 °C and cloud points are below both standards. CAIL and IGIL biodiesel had similar fatty acid methyl ester (FAME) compounds and consisted more of unsaturated fatty acids (hexadecanoate, 9-octadecenoate, octadecanoate, dodecanoate, and 9,12-octadeca-dienoate) than obtained in biodiesel from free lipase. IGIL and CAIL were re-used in 8 and 12 cycles respectively, with > 90% biodiesel yield achieved in four and 11 cycles. Conclusions The study showed that lipase immobilized on Irvingia gabenensis and calcium alginate and used in biodiesel production retained high enzyme activity and biodiesel yield in repeated cycles.


Author(s):  
B.M. Mofio ◽  
J.J. Danboyi

Physicochemical analysis of Biodiesel produced from soya bean oil was carried out in order to ascertain the quality of the biodiesel produced as regards its physical and chemical parameters which includes visual appearance, colour, cloud point, flash point, pour point, cetane index, diesel index, kinematic velocity and calorific value. The oil was extracted from 60g of soya bean seeds (Glycine max) using the soxhlet method of extraction. Biodiesel which is biodegradable was therefore produced by chemical reaction of the oil with a methoxide solution containing 7cm3 of methanol and 0.2g of Sodium Hydroxide as the catalyst through a process called transesterification. Two products were obtained, the glycerin which is denser settled at the bottom while the fatty acid methyl esters was found to be on the top. 8.4cm3 of biodiesel and 3cm3of glycerin was recovered, the yield of biodiesel was calculated to be 50.74% and then it was subjected to physicochemical analysis to ascertain its quality. The properties of biodiesel was tested and found to be in confinement with the ASTM D6751 specification for biodiesel fuels and the results obtained with test methods used for colour and appearance was established to be a yellowish and clear liquid (visual), cloud point +8OC (D5773), pour point +4OC (D5950) and acid value 0.3 mg/KOH/g (titrimetric). Based on the result for the cloud and pour point of the produced biodiesel, B100 (100% biodiesel) can be used in Nigeria with no challenge as compared to country like Russia where their temperature is extremely cold which could cause biodiesel to gel and then solidify.


2019 ◽  
Author(s):  
Chem Int

Present study was designed to produce biodiesel using Cola lepidota seed oil in the presence of clay catalyst. The extraction was done in petroleum ether and oil was characterized using Fourier Transform Infrared Spectrophotometer (FTIR) and scanning electron microscope (SEM) techniques. The biodiesel produced, was characterized for specific gravity, kinematic viscosity, American petroleum index (API) gravity, flash point, cloud point, aniline point and diesel index. The result from FTIR shows that there was C-N stretching aliphatic amine at 1072.46 cm-1, CH2X alkyl halides at 1226.77 cm-1, C-C stretching (in ring) aromatics at 1442.80 cm-1, N-O asymmetric stretching nitro compounds at 1527.67cm-1, C=C stretching α, β unsaturated esters at 1712.85 cm-1, C-C stretching aromatics at 2924.18 cm-1, O-H stretch or free hydroxyl alcohols or phenols at 3610.86 cm-1. The oil yield was 1.76%. The result revealed that the biodiesel showed the following properties; specific gravity (0.862 g/cm3), viscosity (4.8mm2/sec), API (30.24 oC), flash point (80 oC), cloud point (-2 oC), aniline point (68 oC) and diesel index (1.424). These values were within the recommended limits of American Standard for Testing Material (ASTM D6751). This study reveals that C. lepidota oil is a veritable precursor for biodiesel production and other industrial applications.


Reproduction ◽  
2000 ◽  
pp. 111-120 ◽  
Author(s):  
JA Chapman ◽  
OW Wiebkin ◽  
WG Breed

The zona pellucida glycoconjugate content of several marsupial species was investigated using differential lectin histochemistry. Ovaries from fat-tailed dunnarts, a southern brown bandicoot, grey short-tailed opossums, brushtail possums, ringtail possums, koalas and eastern grey kangaroos were fixed, embedded in paraffin wax, sectioned and stained with ten fluorescein isothiocyanate-conjugated lectins. Sections were also incubated with either neuraminidase or saponified, respectively, before incubation with the lectins to identify saccharide residues masked by sialic acids or O-acetyl groups on sialic acids. The zonae pellucidae surrounding the oocytes of the marsupials demonstrated interspecific variation in glycoconjugate content, with mannose-containing glycoconjugates exhibiting the greatest variation. Some of the zona pellucida glycoconjugates of all species, except those of the opossums, were masked by sialic acid with an increase in fluorescence with lectins from Arachis hypogea (PNA), and Glycine max (SBA), after desialylation. The disaccharide beta-galactose(1-4)N-acetyl-D-glucosamine appeared to be conformationally masked by O-acetyl groups of sialic acids in the zonae pellucidae of all species, with an increase in fluorescence with the lectin from Erythrina cristagalli (ECA), after saponification. Similar intensity and localization of beta-(1-4)-N-acetyl-D-glucosamine, as shown by staining of the lectin from Triticum vulgaris (WGA), to the inner and outer regions of the zona pellucida, were found to those reported in eutherian species. WGA fluorescence became uniform throughout the zonae pellucidae after saponification, indicating differential O-acetylation of sialic acids on the internal compartment of the zonae pellucidae.


2014 ◽  
Vol 3 (10) ◽  
pp. 3419
Author(s):  
Mohan Reddy Nalabolu* ◽  
Varaprasad Bobbarala ◽  
Mahesh Kandula

At the present moment worldwide waning fossil fuel resources as well as the tendency for developing new renewable biofuels have shifted the interest of the society towards finding novel alternative fuel sources. Biofuels have been put forward as one of a range of alternatives with lower emissions and a higher degree of fuel security and gives potential opportunities for rural and regional communities. Biodiesel has a great potential as an alternative diesel fuel. In this work, biodiesel was prepared from waste cooking oil it was converted into biodiesel through single step transesterification. Methanol with Potassium hydroxide as a catalyst was used for the transesterification process. The biodiesel was characterized by its fuel properties including acid value, cloud and pour points, water content, sediments, oxidation stability, carbon residue, flash point, kinematic viscosity, density according to IS: 15607-05 standards. The viscosity of the waste cooking oil biodiesel was found to be 4.05 mm2/sec at 400C. Flash point was found to be 1280C, water and sediment was 236mg/kg, 0 % respectively, carbon residue was 0.017%, total acid value was 0.2 mgKOH/g, cloud point was 40C and pour point was 120C. The results showed that one step transesterification was better and resulted in higher yield and better fuel properties. The research demonstrated that biodiesel obtained under optimum conditions from waste cooking oil was of good quality and could be used as a diesel fuel.


2021 ◽  
Vol 14 (2) ◽  
pp. 132-141
Author(s):  
M. N. Lyutikova ◽  
S. M. Korobeynikov ◽  
A. A. Konovalov

Power transformers are key equipment in power generation, transmission, and distribution systems. The reliability of power transformers is based on the performance of the insulation system, which includes solid cellulose insulation and a liquid dielectric. Modern power engineering requires liquid insulation to have excellent insulating properties, high fire resistance, and biodegradability. Mineral oil that has been in use for over 100 years does not meet certain requirements. Therefore, various methods of enhancing the insulating properties of the oil are currently being considered, including mixing it with other liquid dielectrics, which have excellent properties. Synthetic and natural esters are considered as alternative fluids.This article discusses the possibility of enhancing the insulating characteristics of mineral oil with a high content of aromatic hydrocarbons (for example, T-750 oil) by mixing it with synthetic ester Midel 7131. Assessment is given of insulating parameters of the resulting mixtures with an ester fraction in mineral oil from 0% to fifty%. The main characteristics of the mixtures are described, such as density, kinematic viscosity, flash point, dielectric loss tangent, relative dielectric permittivity, breakdown voltage, and moisture content. It is shown that with an increase in the proportion of ester, some parameters of the obtained insulating liquid improve (flash point, dielectric constant, breakdown voltage), while values of other parameters (density, kinematic viscosity, dielectric loss tangent) with an ester content of more than 10% in the mixture do not meet the requirements for mineral oils.


2019 ◽  
Vol 10 (01) ◽  
pp. 20-27
Author(s):  
Dian Kurnia Sari ◽  
Rian Ternando

Minyak bumi dievaluasi guna menentukan potensi minyak bumi sebagai bahan baku kilang minyak untuk menghasilkan fraksi yang dikehendaki. Evaluasi yang dilakukan meliputi pengujian sifat umum minyak bumi, klasifikasi minyak bumi dengan distilasi True Boiling Point (TBP) wide cut (pemotongan jarak lebar) serta analisis fraksi kerosin. Fraksi kerosin yang dihasilkan dari primary process dapat diolah menjadi bahan bakar rumah tangga (minyak  tanah) dan bahan bakar lampu penerangan. Selain itu fraksi kerosin juga dapat dioalah menjadi bahan bakar untuk pesawat terbang jenis jet (avtur). Avtur adalah kerosin yang dengan  spesifikasi yang diperketat, terutama mengenai titik uap dan titik beku. Untuk melakukan pengolahan pada minyak bumi perlu diketahui karakteristik dan spesifikasi minyak  bumi (bahan baku) yang akan diolah untuk mengetahui mutu dan manfaat minyak bumi tersebut. Salah satu parameter uji analisis minyak bumi yaitu parameter sifat fisika. Dari data distilasi TBP diperoleh persentase fraksi kerosin Crude Oil 99 PT HS sebesar 29 % vol sedangkan Crude Oil 165 PT RT sebesar 23 % vol. Berdasarkan analisis sifat fisika yang meliputi Specific Gravity, Refractive Index nD20, Freezing Point, Smoke Point, Flash Point “Abel”, Aniline Point, Copper Strip Corrosion, Kinematic Viscosity dan Characterization KUOP. Crude Oil 99 dan Crude Oil 165 memiliki mutu yang baik serta memenuhi spesifikasi produk kerosin maupun produk avtur.


Sign in / Sign up

Export Citation Format

Share Document