scholarly journals Evaluation of Functional Features of Lignocellulosic Particle Composites Containing Biopolymer Binders

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7718
Author(s):  
Aneta Gumowska ◽  
Eduardo Robles ◽  
Grzegorz Kowaluk

In this research, the assessment of the impact of natural biopolymer binders on selected mechanical and physical properties of lignocellulosic composites manufactured with different resination (12%, 15%, 20%). Different mechanical and physical properties were determined: modulus of rupture, modulus of elasticity, internal bonding strength, thickness swelling, water absorption, contact angle, and density profile. Moreover, thermal properties such as thermogravimetric analysis and differential scanning calorimetry were studied for the polymers. The results showed significant improvement of characterized features of the composites produced using biopolymers. However, the rise of the properties was visible when the binder content raised from 12% to 15%. Further increase of biopolymer binder did not imply a considerable change. The most promising biopolymer within the tested ones seems to be polycaprolactone (PCL).

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 4171-4199
Author(s):  
Eva Oktoberyani Christy ◽  
Soemarno ◽  
Sumardi Hadi Sumarlan ◽  
Agoes Soehardjono

This study investigated the effects of the pressing temperature on the mechanical and physical properties of binderless bark particleboard made from Gelam bark waste and the improvement of those properties. In addition, the thermal insulation properties of the particleboard were determined. Four different temperatures (140 °C, 160 °C, 180 °C, and 200 °C) were used to make single-layer binderless bark particleboard with a target density of less than or equal to 0.59 g/cm3. Results revealed that the pressing temperature affected the mechanical properties (modulus of rupture, modulus of elasticity, and tensile strength perpendicular to panel surface), which increased as the temperature increased, and the physical properties (thickness swelling and water absorption), which decreased as the temperature increased. Based on the Tukey test, increasing the temperature from 180 to 200 °C did not significantly affect the mechanical or physical properties, except for the tensile strength perpendicular to panel surface. None of the mechanical properties met SNI standard 03-2105-2006 (2006); however, the 12% maximum thickness swelling requirement was met for binderless bark particleboard hot-pressed at 200 °C. Binderless bark particleboard hot-pressed at 200 °C had high water resistance, regardless of its low strength, and a thermal conductivity value of 0.14 W/m∙K.


2021 ◽  
Vol 71 (3) ◽  
pp. 275-282
Author(s):  
Yoichi Kojima ◽  
Tetsuya Makino ◽  
Kazuaki Ota ◽  
Kazushige Murayama ◽  
Hikaru Kobori ◽  
...  

Abstract The objective of this study was to investigate the lab-scale manufacturing process of insulation fiberboard (IFB) with cellulose nanofibers (CNFs) and evaluate the effects of CNFs on the mechanical and physical properties of the IFB. Because the fabricated IFBs with CNFs had a homogeneous appearance, it was assumed that CNFs can be easily dispersed within IFB by adding them during the mixing stage of the wet process of wood-based board production. The results for the IFBs with CNFs revealed that the density and bending properties increased, while the thickness decreased with an increase in the CNF addition ratio. Furthermore, after the water absorption test, the weight change rates of the IFBs decreased, and the thickness swelling rates increased. Although the size of the specimens was different from the size in JIS A 5905 (Japan Standards Association 2014), the modulus of rupture (MOR) values of IFBs with a target density more than or equal to 0.20 g/cm3 were higher than the value of A-class IFB in the standard for all CNF addition ratios. In addition, lower thermal conductivity may be realized under similar MOR values by adding CNFs to IFB. On the other hand, to produce CNF-reinforced IFBs with target density/thickness, it is necessary to develop a method for decreasing the cohesive force derived from CNF aggregation and the compressive force originating from the water surface tension caused by the high water retention of CNFs.


2007 ◽  
Vol 37 (5) ◽  
pp. 866-873 ◽  
Author(s):  
Jun Li Shi ◽  
Bernard Riedl ◽  
James Deng ◽  
Alain Cloutier ◽  
S. Y. Zhang

Mechanical and physical properties of medium-density fibreboard (MDF) panels made from black spruce ( Picea mariana (Mill.) BSP) top, middle, and butt logs were studied. The analysis of variance and analysis of covariance were both performed to examine the impact of log position in the tree on panel modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB), linear expansion (LE), thickness swell (TS), and water absorption. Results indicate that MOE and IB strength of MDF panels made from top and middle logs were significantly superior to those of panels made from butt logs; however, there was no significant difference in MOE and IB between panels made from top and middle logs. Water absorptions of top and middle log panels were significantly lower than that of panels made from butt logs, and the difference in water absorption between panels made from top and middle logs was not significant. TS of top log panels was the smallest among the panels from the three log positions in the tree and was significantly different from those of middle and butt log panels. TS of butt log panels was the highest, which was significantly different from that of top and middle log panels. The differences in LE among the panels made from top, middle, and butt logs were not significant. The comparison of MOR of top, middle, and butt log panels was dependent on panel density because of the interactions among the three groups. Top and middle log panels showed superior properties, because the thinner cell walls of fibres from top and middle logs resulted in an increased compaction ratio compared with the butt log panels. Panel density affected both panel MOR and MOE considerably; however, its impact on IB, LE, TS, and water absorption was not significant in this study. The equations describing the linear relationships between MOR, MOE, and panel density were developed.


2017 ◽  
Vol 4 (2) ◽  
pp. 157
Author(s):  
M. I. Iskandar

Effect of Temperature of Straw Boiling on Mechanical and Physical Properties of Particle Board          Levels of extractive substances in the straw as much as 10-15% and 12-18% silica content respectively. Two of these substances can inhibit good adhesion bonding between the particles during the sealing process. Treatment of straw boiling  before gluing process can reduce the negative effects of extractive substances to the bonding adhesive. The purpose of this study was to determine the effect of temperature of the boiling straw on mechanical and physical properties of particle board. The tested physical properties included density, moisture content, thickness swelling and water absorption while the mechanical properties tested included flexural modulus, fracture modulus, internal bonding strength and screw holding strength. Analysisof statistic of the data used was Complete Random Design (RAL). The treatment consisted of a five-level with three replications so that the total number of trials was fifteen. To determine the effect of treatment carried out the Analysis of Variance. To determine the effect of treatment was significantly different would do a further test the Duncan's multiple range test. Processing data using SAS software, version 6123. The results showed an increase in the temperature of straw boiling was very significant and fluctuative on the properties of particle board and the moisture content, thickness swelling 24 hours, flexural modulus (MOE), fracture modulus (MOR), but did not significant affect the density and internal bonding strength. Boiling temperature 40⁰C on straw produce panels with the best qualities. The properties of particle board research results that met the requirements of Standard JIS A 5908: 215 only the density and moisture content.Keywords: temperature, boiling, straw, mechanical physical properties ABSTRAK         Kadar zat ekstraktif dalam jerami sebanyak 10-15% dan kadar silika 12-18%. Dua zat tersebut dapat menghambat ikatan rekat yang baik antar partikel pada waktu proses perekatan. Perlakuan perebusan jerami sebelum proses perekatan dapat mengurangi pengaruh negatif zat ekstraktif terhadap ikatan rekat. Tujuan penelitian ini adalah untuk mengetahui pengaruh temperatur perebusan jerami terhadap sifat fisis mekanis papan partikel. Sifat fisis yang diuji meliputi kerapatan, kadar air, pengembangan tebal dan daya serap air sedangkan sifat mekanis yang diuji meliputi modulus lentur, modulus patah, keteguhan rekat internal dan kuat pegang sekrup. Analisis statistik data yang digunakan adalah Rancangan Acak Lengkap (RAL). Perlakuan terdiri dari lima taraf dengan ulangan sebanyak tiga sehingga jumlah total percobaan adalah lima belas. Untuk mengetahui pengaruh dari perlakuan dilakukan analisis ragam (Analysis of Variance). Untuk mengetahui pengaruh berbeda nyata perlakuan dilakukan uji lanjut dengan uji wilayah berganda Duncan. Pengolahan data menggunakan software SAS versi 6.123. Hasil penelitian menunjukkan peningkatan temperatur perebusan jerami berpengaruh sangat nyata dan fluktuatif terhadap sifat-sifat papan partikel dan kadar air, pengembangan tebal 24 jam, modulus lentur (MOE), modulus patah (MOR), tetapi tidak berpengaruh nyata terhadap kerapatan dan keteguhan rekat internal. Perebusan jerami pada suhu 40⁰C menghasilkan panil dengan sifat-sifat terbaik. Sifat-sifat papan partikel hasil penelitian yang memenuhi persyaratan Standar JIS A 5908:215 hanya kerapatan dan kadar air.Kata kunci: temperatur, perebusan, jerami, sifat fisis dan mekanis


2011 ◽  
Vol 471-472 ◽  
pp. 572-577 ◽  
Author(s):  
Hüsnü Yel ◽  
Ayfer Dönmez Çavdar ◽  
Hülya Kalaycioğlu

The residues of tea factory and waste hardboards are generally incinerated without utilizing their heat performances. The first objective of this study was to manufacture cement bonded particleboard using residues of tea factory (Camellia sinenses L.) and waste hardboards. The second objective was to evaluate modulus of rupture (MOR), modulus of elasticity (MOE), internal bonding strength (IB), water absorption (WA) and thickness swelling (TS) properties of the boards produced. The boards were produced at two density levels of 800 and 1200 kg/m3 and at five lignocellulosic mixture ratios of poplar chips/hardboards/tea residues (1/0/0; 1/1/0; 1/0/1; 0/1/0; 0/0/1, based on weigth). All the boards were produced at lignocellulosic material/cement ratio of 1:2.75 on a weight to weight basis. As cement curing accelerators, Al2(SO4)3 and Na2SiO3 were used at ratios of 1.5% and 3.5%, based on cement weight, respectively. The MOR values ranged from 0.8 to 10.99 MPa and MOE values ranged from 254 to 2979 MPa. The mean values of WA and TS after 24 h of water soaking of the cemen bonded particleboards ranged from 28% to 43.5% and 1.3% to 8.08%, respectively.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6984-6992
Author(s):  
Ali Hassanpoor Tichi

Effects of two widely available and underutilized lignocellulosic materials on the mechanical and physical properties of particleboards were investigated in this work. The ratio of mixtures lignocellulosic flakes at four levels (100% aspen wood), (50% aspen wood: 25% citrus: 25% old railroad ties), (50% aspen wood: 50% citrus), and (50% aspen wood: 50% old railroad ties), and the percentage of resin in two levels (8 and 12%) were considered as variable factors. The 100% aspen wood (Populus tremula) was mixed as a control board (100% aspen wood). Then the mechanical and physical properties of the samples including modulus of rupture, modulus of elasticity, internal bond, water absorption, and thickness swelling after 2 h and 24 h of immersion (EN 310-319) and fire resistance (ISO 11925-2) were measured. The results showed that with increasing poplar wood in mixtures, modulus of rupture, modulus of elasticity, internal bond increased, while water absorption and thickness swelling decreased. Also, in comparison with the control boards, the boards that were made by mixing 50% poplar and 50% citrus branches with 12% glue had the highest mechanical strength. The results also showed that increasing the amount of old railroad ties chips in mixing caused a significant decrease in the fire retardancy of the boards.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1745 ◽  
Author(s):  
Ronald Schwarzenbrunner ◽  
Marius Catalin Barbu ◽  
Alexander Petutschnigg ◽  
Eugenia Mariana Tudor

The aim of this study is to investigate the performance of casein-based adhesives for the bonding of ash (Fraxinus spp.) veneers for the manufacture of biodegradable skis. Different formulations containing casein powder, water, lime, sodium silicate, and various glue amounts were tested for shear strength after water storage, modulus of rupture and modulus of elasticity, water absorption, and thickness swelling. Two other classic wood adhesives, namely epoxy and polyvinyl acetate (PVAc) type D4 were used as control. The highest efficiency of both mechanical and physical properties was recorded for the samples glued with caseins and an increased amount of lime. There was also an affinity between casein adhesive distribution and physical and mechanical plywood performance. Moreover, the developed casein-based glues were also used to bond the plywood for ski cores and tested in real-life winter conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shameer Hisham ◽  
Hairul Anuar Tajuddin ◽  
Norazilawati Muhamad Sarih ◽  
Nur Zarith Diana Diana Zakaria ◽  
Zul Hazrin Zainal Abidin ◽  
...  

Purpose In this work, the blends of poly(methyl methacrylate), PMMA and poly(methyl vinyl ether-alt-maleic acid monoethyl ester), PMVEMA-ES are studied as organic coatings to evaluate the impact of intermolecular hydrogen bonding on the physical and thermal characteristics of the prepared coatings. Design/methodology/approach PMMA (Mw = 120,000 g mol-1) was chosen as our binder material. Due to the low adhesion property of PMMA on polar substrates, it was blended with PMVEMA-ES, which contains polar –COOH groups, to improve the adhesion and thermal properties of the coatings by forming intermolecular hydrogen bonds. A cross-hatch adhesion test was carried out to evaluate the adhesion strength of different ratios of PMMA/PMVEMA-ES blends as coatings. In addition, changes in the glass-transition temperature, Tg as the composition varies were studied using Differential Scanning Calorimetry, DSC. Then, glossiness and hiding power tests were also conducted to evaluate the physical properties of the prepared coatings. Findings Upon a closer look at the DSC results, it was found that blends consisting of 12.5, 25.0 and 87.5 wt. % PMMA were completely compatible due to the presence of only a single Tg in their thermograms. Other blend compositions showed two distinct Tgs, indicating partial compatibility. Furthermore, the addition of PMVEMA-ES caused the Tg of PMMA to shift to lower temperatures, a strong indication of intermolecular hydrogen bonding interactions between the two components. From the cross-hatch adhesion results, the addition of PMVEMA-ES improved the adhesion properties of PMMA coating, except for blends consisting of 62.5 and 75.0 wt. % PMMA possibly due to the partial incompatibility between the two components. These findings were further corroborated with the results of glossiness and hiding power measurements. The superior result was seen for the blend consisting of 12.5 wt. % PMMA with strong adhesion property, high glossiness, compatibility and high translucency. Practical implications PMVEMA-ES can potentially be used as an adhesion promoter in PMMA-based coating formulations. Originality/value This is the first report on the properties of PMMA/PMVEMA-ES blends as coatings.


Holzforschung ◽  
1999 ◽  
Vol 53 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Todd F. Shupe ◽  
Chung Y. Hse ◽  
Elvin T. Choong ◽  
Leslie H. Groom

Summary The objective of this study was to determine the effect of five different silvicultural strategies and wood type on mechanical and physical properties of loblolly pine (Pinus taeda L.) particleboard and fiberboard. The furnish was prepared in an unconventional manner from innerwood and outerwood veneer for each stand. Modulus of rupture (MOR) differences between the stands were insignificant for particleboard. Some significant modulus of elastisity (MOE) differences existed between the stands for particleboard and fiberboard. Differences between the wood types were minimal for each stand. Innerwood yielded higher mean MOR, MOE, and internal bond (IB) values than outerwood for most of the stands. The differences between the stand and wood types for 2 and 24 h thickness swell and 2 and 24h water adsorption were very minimal. This research has shown that innerwood can produce particleboard and fiberboard panels with very comparable mechanical and physical properties to outerwood. The effect of the silvicultural strategy (i. e., stand) was minimal for most properties.


2007 ◽  
Vol 18-19 ◽  
pp. 43-48 ◽  
Author(s):  
J.O. Osarenmwinda ◽  
J.C. Nwachukwu

The purpose of this study was to determine the effect of particle size on the mechanical properties (Modulus of Elasticity, Modulus of Rupture, and Internal Bond) and physical properties (thickness swelling and water absorption) of rice husk particleboard. The particle sizes used were 1.0mm, 1.18mm, 2mm, 2.36mm and 2.80mm. Each was mixed with a constant resin (urea formaldehyde) concentration of 20% of oven dry weight of rice husk particles. The results showed that as the particle size increased, the particleboard’s mechanical and physical properties decreased. For example, the modulus of elasticity, modulus of rupture, internal bond, thickness swelling and water absorption for 1.0mm particle size particleboard were 1590N/mm2, 11.11N/mm2, 0.28N/mm2,10.90% and 38.53% respectively, while for 2.8mm particle size they were 1958N/mm2,14.2N/mm2, 0.44N/mm2, 11.51% and 47.21% respectively. Overall results showed that particleboard made from rice husk exceed the EN standard for modulus of elasticity, modulus of rupture, internal bond. However, thickness swelling values were poor. Hence, the smaller the particle size the better the properties of the particleboard.


Sign in / Sign up

Export Citation Format

Share Document