scholarly journals Boosting of Antioxidants and Alkaloids in Catharanthus roseus Suspension Cultures Using Silver Nanoparticles with Expression of CrMPK3 and STR Genes

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2202
Author(s):  
Ahmed Fouad ◽  
Adel E. Hegazy ◽  
Ehab Azab ◽  
Ebtihal Khojah ◽  
Tarek Kapiel

Global agricultural systems are under unprecedented pressures due to climate change. Advanced nano-engineering can help increase crop yields while ensuring sustainability. Nanotechnology improves agricultural productivity by boosting input efficiency and reducing waste. Alkaloids as one of the numerous secondary metabolites that serve variety of cellular functions essential for physiological processes. This study tests the competence of silver nanoparticles (AgNPs) in boosting alkaloids accumulation in Catharanthus roseus suspension cultures in relation to the expression of C. roseus Mitogen Activated Protein Kinase 3 (CrMPK3) and Strictosidine Synthase (STR) genes. Five concentrations (5, 10, 15, 20 and 25 mg·L−1) of AgNPs were utilized in addition to deionized water as control. Results reflected binary positive correlations among AgNPs concentration, oxidative stress indicated with increase in hydrogen peroxide and malondialdehyde contents, activities of ascorbate peroxidase and superoxide dismutase, expression of the regulatory gene CrMPK3 and the alkaloid biosynthetic gene STR as well as alkaloids accumulation. These correlations add to the growing evidence that AgNPs can trigger the accumulation of alkaloids in plant cells through a signaling pathway that involves hydrogen peroxide and MAPKs, leading to up-regulation of the biosynthetic genes, including STR gene.

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2611
Author(s):  
Jong Hee Im ◽  
Seungmin Son ◽  
Jae-Heung Ko ◽  
Kyung-Hwan Kim ◽  
Chung Sun An ◽  
...  

The plant mitogen-activated protein kinase (MPK) cascade, a highly conserved signal transduction system in eukaryotes, plays a crucial role in the plant’s response to environmental stimuli and phytohormones. It is well-known that nuclear translocation of MPKs is necessary for their activities in mammalian cells. However, the mechanism underlying nuclear translocation of plant MPKs is not well elucidated. In the previous study, it has been shown that soybean MPK6 (GmMPK6) is activated by phosphatidic acid (PA) and hydrogen peroxide (H2O2), which are two signaling molecules generated during salt stress. Using the two signaling molecules, we investigated how salt stress triggers its translocation to the nucleus. Our results show that the translocation of GmMPK6 to the nucleus is mediated by H2O2, but not by PA. Furthermore, the translocation was interrupted by diphenylene iodonium (DPI) (an inhibitor of RBOH), confirming that H2O2 is the signaling molecule for the nuclear translocation of GmMPK6 during salt stress.


2010 ◽  
Vol 298 (3) ◽  
pp. C542-C549 ◽  
Author(s):  
J. M. McClung ◽  
A. R. Judge ◽  
S. K. Powers ◽  
Z. Yan

Oxidative stress is a primary trigger of cachectic muscle wasting, but the signaling pathway(s) that links it to the muscle wasting processes remains to be defined. Here, we report that activation of p38 mitogen-activated protein kinase (MAPK) (phosphorylation) and increased oxidative stress ( trans-4-hydroxy-2-nonenal protein modification) in skeletal muscle occur as early as 8 h after lipopolysaccharide (1 mg/kg) and 24 h after dexamethasone (25 mg/kg) injection (intraperitoneal) in mice, concurrent with upregulation of autophagy-related genes, Atg6, Atg7, and Atg12. Treating cultured C2C12 myotubes with oxidant hydrogen peroxide (4 h) resulted in increased p38 phosphorylation and reduced FoxO3 phosphorylation along with induced Atg7 mRNA expression without activation of NF-κ B or FoxO3a transcriptional activities. Furthermore, inhibition of p38α/β by SB202190 blocked hydrogen peroxide-induced atrophy with diminished upregulation of Atg7 and atrogenes [muscle atrophy F-box protein ( MAFbx/Atrogin-1) , muscle ring finger protein 1 ( MuRF-1), and Nedd4]. These findings provide direct evidence for p38α/β MAPK in mediating oxidative stress-induced autophagy-related genes, suggesting that p38α/β MAPK regulates both the ubiquitin-proteasome and the autophagy-lysosome systems in muscle wasting.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Liqian Zhu ◽  
Clinton Jones ◽  
Gaiping Zhang

Macrophages are crucial members of the mononuclear phagocyte system essential to protect the host from invading pathogens and are central to the inflammatory response with their ability to acquire specialized phenotypes of inflammatory (M1) and anti-inflammatory (M2) and to produce a pool of inflammatory mediators. Equipped with a broad range of receptors, such as Toll-like receptor 4 (TLR4), CD14, and Fc gamma receptors (FcγRs), macrophages can efficiently recognize and phagocytize invading pathogens and secrete cytokines by triggering various secondary signaling pathways. Phospholipase C (PLC) is a family of enzymes that hydrolyze phospholipids, the most significant of which is phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Cleavage at the internal phosphate ester generates two second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), both of which mediate in diverse cellular functions including the inflammatory response. Recent studies have shown that some PLC isoforms are involved in multiple stages in TLR4-, CD14-, and FcγRs-mediated activation of nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and interferon regulatory factors (IRFs), all of which are associated with the regulation of the inflammatory response. Therefore, secondary signaling by PLC is implicated in the pathogenesis of numerous inflammatory diseases. This review provides an overview of our current knowledge on how PLC signaling regulates the macrophage-mediated inflammatory response.


2005 ◽  
Vol 25 (18) ◽  
pp. 7940-7952 ◽  
Author(s):  
Monideepa Roy ◽  
Zhigang Li ◽  
David B. Sacks

ABSTRACT IQGAP1 modulates many cellular functions such as cell-cell adhesion, transcription, cytoskeletal architecture, and selected signaling pathways. We previously documented that IQGAP1 binds extracellular signal-regulated kinase (ERK) 2 and regulates growth factor-stimulated ERK activity. Here we show that MEK, the molecule immediately upstream of ERK in the Ras/mitogen-activated protein (MAP) kinase signaling cascade, also interacts directly with IQGAP1. Both MEK1 and MEK2 bound IQGAP1 in vitro and coimmunoprecipitated with IQGAP1. The addition of ERK2 enhanced by fourfold the in vitro interaction of MEK2 with IQGAP1 without altering binding of MEK1. Similarly, ERK1 promoted MEK binding to IQGAP1, but either MEK protein altered the association between IQGAP1 and ERK. Epidermal growth factor (EGF) differentially regulated binding, enhancing MEK1 interaction while reducing MEK2 binding to IQGAP1. In addition, both knockdown and overexpression of IQGAP1 reduced EGF-stimulated activation of MEK and ERK. Analyses with selective IQGAP1 mutant constructs indicated that MEK binding is crucial for IQGAP1 to modulate EGF activation of ERK. Our data strongly suggest that IQGAP1 functions as a molecular scaffold in the Ras/MAP kinase pathway.


2013 ◽  
Vol 26 (10) ◽  
pp. 1190-1199 ◽  
Author(s):  
Maria Luiza Peixoto de Oliveira ◽  
Caio Cesar de Lima Silva ◽  
Valéria Yukari Abe ◽  
Marcio Gilberto Cardoso Costa ◽  
Raúl Andrés Cernadas ◽  
...  

Mitogen-activated protein kinases (MAPK) play crucial roles in plant immunity. We previously identified a citrus MAPK (CsMAPK1) as a differentially expressed protein in response to infection by Xanthomonas aurantifolii, a bacterium that causes citrus canker in Mexican lime but a hypersensitive reaction in sweet oranges. Here, we confirm that, in sweet orange, CsMAPK1 is rapidly and preferentially induced by X. aurantifolii relative to Xanthomonas citri. To investigate the role of CsMAPK1 in citrus canker resistance, we expressed CsMAPK1 in citrus plants under the control of the PR5 gene promoter, which is induced by Xanthomonas infection and wounding. Increased expression of CsMAPK1 correlated with a reduction in canker symptoms and a decrease in bacterial growth. Canker lesions in plants with higher CsMAPK1 levels were smaller and showed fewer signs of epidermal rupture. Transgenic plants also revealed higher transcript levels of defense-related genes and a significant accumulation of hydrogen peroxide in response to wounding or X. citri infection. Accordingly, nontransgenic sweet orange leaves accumulate both CsMAPK1 and hydrogen peroxide in response to X. aurantifolii but not X. citri infection. These data, thus, indicate that CsMAPK1 functions in the citrus canker defense response by inducing defense gene expression and reactive oxygen species accumulation during infection.


2020 ◽  
Vol 8 (2) ◽  
pp. 65-67
Author(s):  
Andrea Schulz

Cutaneous aging is a complex and continuous biological process characterized by cellular and molecular alterations, with progressive reduction of the bodyʼs capacity to maintain the homeostasis, senescence, and/or apoptosis of the dermal cells. Fibroblast growth factors (FGF) have elicited studies to evaluate their role of repair and remodeling of the dermis during the skin anti-aging process, since they are regulatory proteins that mediate important signaling pathways and act on cell regeneration and repair processes. FGF acts primarily through binding to tyrosine kinase receptors through the autophosphorylation of their residues, promoting the phosphorylation of serine, threonine, and tyrosine residues of specific target proteins such as Raf-1, MAPK/Erk kinase, and extracellular signal-regulated kinase-1, which are part of the cascade of MAP kinases (mitogen-activated protein kinase). Then, FGF initiate signaling cascades inside the cell, where each kinase activates the following by phosphorylation, resulting in alterations of cellular functions. In addition, the FGF has a relevant role in anti-aging therapy because it is related to collagen and elastin synthesis activation responsible for skin resistance and elasticity, characteristics that are diminished with skin aging. Thus, the present article aims to review several scientific studies that demonstrated the cell signaling involved with the action of FGF on skin aging.


2009 ◽  
Vol 133 (11) ◽  
pp. 1850-1856
Author(s):  
Yongdong Feng ◽  
Jianguo Wen ◽  
Chung-Che(Jeff) Chang

Abstract Context.—p38 mitogen-activated protein kinase (MAPK) signaling has been implicated in responses ranging from apoptosis to cell cycle, induction of expression of cytokine genes, and differentiation. This plethora of activators conveys the complexity of the p38 pathway. This complexity is further complicated by the observation that the downstream effects of p38 MAPK activation may be different depending on types of stimuli, cell types, and various p38 MAPK isoforms involved. Objective.—This review focuses on the recent advancement of the p38 MAPK isoforms as well as the roles of p38 MAPK in hematologic malignancies. Data Sources.—Review of pertinent published literature and work in our laboratory. Conclusions.—In some hematologic malignancies, activation of p38 plays a key role in promoting or inhibiting proliferation and also in increasing resistance to chemotherapeutic agents. The importance of different p38 isoforms in various cellular functions has been acknowledged recently. Further understanding of these isoforms will allow the design of more specific inhibitors to target particular isoforms to maximize the treatment effect and minimize the side effects for treating hematopoietic malignancies.


2006 ◽  
Vol 34 (5) ◽  
pp. 833-836 ◽  
Author(s):  
D.B. Sacks

Signal transduction networks allow cells to recognize and respond to changes in the extracellular environment. All eukaryotic cells have MAPK (mitogen-activated protein kinase) pathways that participate in diverse cellular functions, including differentiation, survival, transformation and movement. Five distinct groups of MAPKs have been characterized in mammals, the most extensively studied of which is the Ras/Raf/MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase]/ERK cascade. Numerous stimuli, including growth factors and phorbol esters, activate MEK/ERK signalling. How disparate extracellular signals are translated by MEK/ERK into different cellular functions remains obscure. Originally identified in yeast, scaffold proteins are now recognized to contribute to the specificity of MEK/ERK pathways in mammalian cells. These scaffolds include KSR (kinase suppressor of Ras), β-arrestin, MEK partner-1, Sef and IQGAP1. Scaffolds organize multiprotein signalling complexes. This targets MEK/ERK to specific substrates and facilitates communication with other pathways, thereby mediating diverse functions. The adaptor proteins regulate the kinetics, amplitude and localization of MEK/ERK signalling, providing an efficient mechanism that enables an individual extracellular stimulus to promote a specific biological response.


Sign in / Sign up

Export Citation Format

Share Document