bone modeling and remodeling
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Xiaoxiang Ren ◽  
Han Liu ◽  
Xianmin Wu ◽  
Weizong Weng ◽  
Xiuhui Wang ◽  
...  

Reactive oxygen species (ROS) are the key signaling molecules in many physiological signs of progress and are associated with almost all diseases, such as atherosclerosis, aging, and cancer. Bone is a specific connective tissue consisting of cells, fibers, and mineralized extracellular components, and its quality changes with aging and disease. Growing evidence indicated that overproduced ROS accumulation may disrupt cellular homeostasis in the progress of bone modeling and remodeling, leading to bone metabolic disease. Thus, ROS-responsive biomaterials have attracted great interest from many researchers as promising strategies to realize drug release or targeted therapy for bone-related diseases. Herein, we endeavor to introduce the role of ROS in the bone microenvironment, summarize the mechanism and development of ROS-responsive biomaterials, and their completion and potential for future therapy of bone-related diseases.


Author(s):  
Guo-dong Lu ◽  
Peng Cheng ◽  
Ting Liu ◽  
Zhong Wang

Angiogenesis and osteogenesis are tightly coupled during bone modeling and remodeling processes. Here we reported that bone marrow mesenchymal stem cell (BMSC)-derived exosomal miR-29a promotes angiogenesis and osteogenesis in vitro and in vivo. BMSC-derived exosomes (BMSCs-Exos) can be taken up by human umbilical vein endothelial cells (HUVECs) and promote the proliferation, migration, and tube formation of HUVECs. MiRNA-29a level was high in BMSCs-Exos and can be transported into HUVECs to regulate angiogenesis. VASH1 was identified as a direct target of miR-29a, mediating the effects of BMSC-derived exosomal miR-29a on angiogenesis. More interestingly, miR29a-loaded exosomes from engineered BMSCs (miR-29a-loaded BMSCs-Exos) showed a robust ability of promoting angiogenesis and osteogenesis in vivo. Taken together, these findings suggest that BMSC-derived exosomal miR-29a regulates angiogenesis and osteogenesis, and miR-29a-loaded BMSCs-Exos may serve as a potential therapeutic target for osteoporosis.


2020 ◽  
Vol 54 (19) ◽  
pp. 12271-12284 ◽  
Author(s):  
Jiezhang Mo ◽  
Doris Wai-Ting Au ◽  
Miles Teng Wan ◽  
Jingchun Shi ◽  
Ge Zhang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Mohammad Tobeiha ◽  
Mohammed H. Moghadasian ◽  
Negin Amin ◽  
Sadegh Jafarnejad

Bones as an alive organ consist of about 70% mineral and 30% organic component. About 200 million people are suffering from osteopenia and osteoporosis around the world. There are multiple ways of protecting bone from endogenous and exogenous risk factors. Planned physical activity is another useful way for protecting bone health. It has been investigated that arranged exercise would effectively regulate bone metabolism. Until now, a number of systems have discovered how exercise could help bone health. Previous studies reported different mechanisms of the effect of exercise on bone health by modulation of bone remodeling. However, the regulation of RANKL/RANK/OPG pathway in exercise and physical performance as one of the most important remodeling systems is not considered comprehensive in previous evidence. Therefore, the aim of this review is to clarify exercise influence on bone modeling and remodeling, with a concentration on its role in regulating RANKL/RANK/OPG pathway.


Theranostics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 426-436 ◽  
Author(s):  
Yi Peng ◽  
Song Wu ◽  
Yusheng Li ◽  
Janet L. Crane

Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 157 ◽  
Author(s):  
Beth Lee

Skeletal quantity and quality are determined by processes of bone modeling and remodeling, which are undertaken by cells that build and resorb bone as they respond to mechanical, hormonal, and other external and internal signals. As the sole bone resorptive cell type, osteoclasts possess a remarkably dynamic actin cytoskeleton that drives their function in this enterprise. Actin rearrangements guide osteoclasts’ capacity for precursor fusion during differentiation, for migration across bone surfaces and sensing of their composition, and for generation of unique actin superstructures required for the resorptive process. In this regard, it is not surprising that myosins, the superfamily of actin-based motor proteins, play key roles in osteoclast physiology. This review briefly summarizes current knowledge of the osteoclast actin cytoskeleton and describes myosins’ roles in osteoclast differentiation, migration, and actin superstructure patterning.


Sign in / Sign up

Export Citation Format

Share Document