scholarly journals An Updated Review on the Modulation of Carbon Partitioning and Allocation in Arbuscular Mycorrhizal Plants

2021 ◽  
Vol 10 (1) ◽  
pp. 75
Author(s):  
Isaac A. Salmeron-Santiago ◽  
Miguel Martínez-Trujillo ◽  
Juan J. Valdez-Alarcón ◽  
Martha E. Pedraza-Santos ◽  
Gustavo Santoyo ◽  
...  

Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs that supply mineral nutrients to the host plant in exchange for carbon derived from photosynthesis. Sucrose is the end-product of photosynthesis and the main compound used by plants to translocate photosynthates to non-photosynthetic tissues. AMF alter carbon distribution in plants by modifying the expression and activity of key enzymes of sucrose biosynthesis, transport, and/or catabolism. Since sucrose is essential for the maintenance of all metabolic and physiological processes, the modifications addressed by AMF can significantly affect plant development and stress responses. AMF also modulate plant lipid biosynthesis to acquire storage reserves, generate biomass, and fulfill its life cycle. In this review we address the most relevant aspects of the influence of AMF on sucrose and lipid metabolism in plants, including its effects on sucrose biosynthesis both in photosynthetic and heterotrophic tissues, and the influence of sucrose on lipid biosynthesis in the context of the symbiosis. We present a hypothetical model of carbon partitioning between plants and AMF in which the coordinated action of sucrose biosynthesis, transport, and catabolism plays a role in the generation of hexose gradients to supply carbon to AMF, and to control the amount of carbon assigned to the fungus.

Author(s):  
Bo Shu ◽  
YaChao Xie ◽  
Fei Zhang ◽  
Dejian Zhang ◽  
Chunyan Liu ◽  
...  

Calmodulin-like (CML) proteins represent a diverse family of protein in plants, and play significant roles in biotic and abiotic stress responses. However, the involvement of citrus CMLs in plant responses to drought stress (abiotic stress) and arbuscular mycorrhizal fungi (AMF) colonization remain relatively unknown. We characterized the citrus CML genes by analyzing the EF-hand domains and a genome-wide search, and identified a total of 38 such genes, distributed across at least nine chromosomes. Six tandem duplication clusters were observed in the CsCMLs, and 12 CsCMLs exhibited syntenic relationships with Arabidopsis thaliana CMLs. Gene expression analysis showed that 29 CsCMLs were expressed in the roots, and exhibited differential expression patterns. The regulation of CsCMLs expression was not consistent with the cis-elements identified in their promoters. CsCML2, 3, and 5 were upregulated in response to drought stress, and AMF colonization repressed the expression of CsCML7, 9, 12, 13,20, 27, 28, and 35,and induced that of CsCML1, 2, 3, 5, 8, 10, 11, 14, 15, 16, 18, 25, 30, 33, and 37. Furthermore, AMF colonization and drought stress exerted a synergistic effect, evident from the enhanced repression of CsCML7, 9, 12, 13, 27, 28, and 35 and enhanced expression of CsCML2, 3, and 5 under AMF colonization and drought stress. The present study provides valuable insights into the CsCML gene family and its responses to AMF colonization and drought stress.


Biology ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 93 ◽  
Author(s):  
Catarina Campos ◽  
Tânia Nobre ◽  
Michael J. Goss ◽  
Jorge Faria ◽  
Pedro Barrulas ◽  
...  

Symbioses with soil microorganisms are central in shaping the diversity and productivity of land plants and provide protection against a diversity of stresses, including metal toxicity. Arbuscular mycorrhizal fungi (AMF) can form extensive extraradical mycelial networks (ERM), which are very efficient in colonizing a new host. We quantified the responses of transcriptomes of wheat and one AMF partner, Rhizoglomus irregulare, to soil disturbance (Undisturbed vs. Disturbed) and to two different preceding mycotrophic species (Ornithopus compressus and Lolium rigidum). Soil disturbance and preceding plant species engender different AMF communities in wheat roots, resulting in a differential tolerance to soil manganese (Mn) toxicity. Soil disturbance negatively impacted wheat growth under manganese toxicity, probably due to the disruption of the ERM, and activated a large number of stress and starvation-related genes. The O. compressus treatment, which induces a greater Mn protection in wheat than L. rigidum, activated processes related to cellular division and growth, and very few related to stress. The L. rigidum treatment mostly induced genes that were related to oxidative stress, disease protection, and metal ion binding. R. irregulare cell division and molecular exchange between nucleus and cytoplasm were increased by O. compressus. These findings are highly relevant for sustainable agricultural systems, when considering a fit-for-purpose symbiosis.


2021 ◽  
Author(s):  
Zhifang Ran ◽  
Xiaotong Yang ◽  
Yongqing Zhang ◽  
Jie Zhou

Abstract Panax quinquefolius L. has been considered as an important traditional Chinese medicine with a history of more than 300 years in China. Ginsenoside is the main bioactive component. Our research group has found that the accumulation of ginsenoside could be affected by arbuscular mycorrhizal fungi (AMF). However the underlying mechanism how AMF affected the biosynthesis of ginsenoside in P. quinquefolius is still unclear. In this study, the RNA-seq analysis was used to evaluate the effects of AMF (Rhizophagus intraradices, R. intraradices) on the expression of ginsenoside synthesis related genes in P. quinquefolius root. The results indicated that a symbiotic relationship between R. intraradices and P. quinquefolius was established. RNA-seq achieved approximately 48.62 G reads of all samples. Assembly of all the reads involved in all samples produced 63420 transcripts and 24137 unigenes. Differential expression analysis was performed between the control and AMF group. A total of 111 differentially expressed genes (DEGs) in response to AMF vs control were identified, 78 and 33 transcripts were upregulated and downregulated, respectively. Based on the functional analysis, Gene ontology (GO) analysis revealed that most DEGs were related to stress responses and cellular metabolic processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified transduction, plant hormone signal transduction and terpenoids and polyketides biosynthesis pathways. Furthermore, the expression of glycolysis-related genes and ginsenoside synthesis related genes was largely induced by AMF. In conclusion, our results comprehensively elucidated the molecular mechanism how AMF affected the biosynthesis of ginsenoside in P.quinquefolius by transcriptome profiling.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1459
Author(s):  
Shalem Raju Modi ◽  
Tarja Kokkola

GR24 is a synthetic strigolactone analog, demonstrated to regulate the development of plants and arbuscular mycorrhizal fungi. GR24 possesses anti-cancer and anti-apoptotic properties, enhances insulin sensitivity and mitochondrial biogenesis in skeletal myotubes, inhibits adipogenesis, decreases inflammation in adipocytes and macrophages and downregulates the expression of hepatic gluconeogenic enzymes. Transcription factor Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) is a master regulator of antioxidant response, regulating a multitude of genes involved in cellular stress responses and anti-inflammatory pathways, thus maintaining cellular redox homeostasis. Nrf2 activation reduces the deleterious effects of mitochondrial toxins and has multiple roles in promoting mitochondrial function and dynamics. We studied the role of GR24 on gene expression in rat L6 skeletal muscle cells which were differentiated into myotubes. The myotubes were treated with GR24 and analyzed by microarray gene expression profiling. GR24 upregulated the cytoprotective transcription factor Nrf2 and its target genes, activating antioxidant defences, suggesting that GR24 may protect skeletal muscle from the toxic effects of oxidative stress.


2017 ◽  
Vol 30 (9) ◽  
pp. 683-690 ◽  
Author(s):  
Carolien De Cuyper ◽  
Sofie Goormachtig

Strigolactones are well-known endogenous plant hormones that play a major role in planta by influencing different physiological processes. Moreover, ex planta, strigolactones are important signaling molecules in root exudates and function as host detection cues to launch mutualistic interactions with arbuscular mycorrhizal fungi in the rhizosphere. However, parasitic plants belonging to the Orobanchaceae family hijacked this communication system to stimulate their seed germination when in close proximity to the roots of a suitable host. As a result, the secretion of strigolactones by the plant can have both favorable and detrimental outcomes. Here, we discuss these dual positive and negative effects of strigolactones and we provide a detailed overview on the role of these molecules in the complex dialogs between plants and different organisms in the rhizosphere.


Rhizosphere ◽  
2020 ◽  
Vol 15 ◽  
pp. 100230 ◽  
Author(s):  
Diederik van Tuinen ◽  
Eloïse Tranchand ◽  
François Hirissou ◽  
Daniel Wipf ◽  
Pierre-Emmanuel Courty

2021 ◽  
Vol 89 (2) ◽  
Author(s):  
Ciptadi Achmad YUSUP ◽  
Deddy PURWANTORO ◽  
Happy WIDIASTUTI ◽  
. SISWANTO ◽  
Djoko SANTOSO ◽  
...  

The consortium biostimulant combines several types of biostimulant applied holistically, such as phytohormones to induce physiological processes, humic acid to improve nutrition intake and land fertility, and biofertilizer arbuscular mycorrhizal fungi to improve abiotic stress tolerance. The objectives of this research were to analyze the effect of application consortium biostimulant on the growth and productivity of Bululawang sugarcane variety planted in three land typologies, i.e. irrigated heavy soil with good drainage (BPL), irrigated heavy soil with poor drainage (BPJ), and rainfed light soil with good drainage (RHL). The research was conducted on plant cane (PC) sugarcane areal in Lumajang Regency, East Java, from July 2019 to September 2020. The treatment plot area was 1 ha for each land typologies, and the observation were conducted on 10 m plant row with ten times replications. Each treatment was replicated ten times. The results showed that the application of consortium biostimulant could induce faster growth of sugarcane shoots and better roots at one month after planting (MAP). Stalk height and diameter showed significantly different values between treatment and control at the plant age 6 to 12 MAP. In addition, the sugarcane stalk weight per meter row also increases by 13.72 – 28.57%. The growth performance of sugarcane on a commercial scale increased, also sugarcane productivity increased by 11.08 – 20.36%. The potential sugar yield increased by 15.05% in BPL land typology, 4.9% in BPJ land typology, and 9.7% in RHL land typology. The difference in land typologies affected the effectiveness of the consortium biostimulant application in increasing sugarcane productivity.


2022 ◽  
Vol 14 (2) ◽  
pp. 951
Author(s):  
Gheorghe Cristian Popescu ◽  
Monica Popescu

Arbuscular mycorrhizal fungi (AMF) are essential soil microorganisms for terrestrial ecosystems and form beneficial symbioses with the root systems of most agricultural plants. The purpose of this paper was to examine the effect of the community of six AMF on the growth, physiological response, and flowering performance in organic potted lavender culture. The mixture of AMF containing Rhizophagus irregularis, Claroideoglomus claroideum, Funneliformis mosseae, Funneliformis geosporum, Claroideoglomus etunicatum, and Glomus microaggregatum was added in a pot with peat, volcanic rock, and coconut bark. We analyzed the fresh shoot biomass, root biomass, total plant biomass, leaf area, flowering performance, photosynthesis rate, and photosynthetic pigment content. Pearson’s correlation coefficient was performed to get a better understanding of the relationships between the studied variables. The total plant biomass was more pronounced in plants with AMF-S20g (212.01 g plant−1) and AMF-S30g (220.25 g plant−1) than with AMF-S10g (201.96 g plant−1) or in untreated plants (180.87 g plant−1). A statistically significant increase for Chl a, Chl b, and Car was found for AMF-S20g and AMF-S30. Our findings suggest that the AMF mixture application in a growing substrate with peat, coconut bark, and volcanic rock improved plant growth, physiological processes, and ornamental value in mycorrhizal lavender plants. This environmentally friendly agricultural practice could be used for the sustainable production of lavender.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ricardo Peña ◽  
Chanz Robbins ◽  
Joaquim Cruz Corella ◽  
Moses Thuita ◽  
Cargele Masso ◽  
...  

Water scarcity negatively impacts global crop yields and climate change is expected to greatly increase the severity of future droughts. The use of arbuscular mycorrhizal fungi (AMF) can potentially mitigate the effects of water stress in plants. Cassava is a crop that feeds approximately 800 million people daily. Genetically different isolates of the AMF R. irregularis as well as their clonal progeny have both been shown to greatly alter cassava growth in field conditions. Given that cassava experiences seasonal drought in many of the regions in which it is cultivated, we evaluated whether intraspecific variation in R. irregularis differentially alters physiological responses of cassava to water stress. In a first experiment, conducted in field conditions in Western Kenya, cassava was inoculated with two genetically different R. irregularis isolates and their clonal progeny. All cassava plants exhibited physiological signs of stress during the dry period, but the largest differences occurred among plants inoculated with clonal progeny of each of the two parental fungal isolates. Because drought had not been experimentally manipulated in the field, we conducted a second experiment in the greenhouse where cassava was inoculated with two genetically different R. irregularis isolates and subjected to drought, followed by re-watering, to allow recovery. Physiological stress responses of cassava to drought differed significantly between plants inoculated with the two different fungi. However, plants that experienced higher drought stress also recovered at a faster rate following re-watering. We conclude that intraspecific genetic variability in AMF significantly influences cassava physiological responses during water stress. This highlights the potential of using naturally existing variation in AMF to improve cassava tolerance undergoing water stress. However, the fact that clonal progeny of an AMF isolate can differentially affect how cassava copes with natural drought stress in field conditions, highlights the necessity to understand additional factors, beyond genetic variation, which can account for such large differences in cassava responses to drought.


Sign in / Sign up

Export Citation Format

Share Document