protein aging
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 23 (1) ◽  
pp. 285
Author(s):  
Victor V. Dyakin ◽  
Nuka V. Dyakina-Fagnano ◽  
Laura B. Mcintire ◽  
Vladimir N. Uversky

In humans, age-associated degrading changes, widely observed in molecular and cellular processes underly the time-dependent decline in spatial navigation, time perception, cognitive and psychological abilities, and memory. Cross-talk of biological, cognitive, and psychological clocks provides an integrative contribution to healthy and advanced aging. At the molecular level, genome, proteome, and lipidome instability are widely recognized as the primary causal factors in aging. We narrow attention to the roles of protein aging linked to prevalent amino acids chirality, enzymatic and spontaneous (non-enzymatic) post-translational modifications (PTMs SP), and non-equilibrium phase transitions. The homochirality of protein synthesis, resulting in the steady-state non-equilibrium condition of protein structure, makes them prone to multiple types of enzymatic and spontaneous PTMs, including racemization and isomerization. Spontaneous racemization leads to the loss of the balanced prevalent chirality. Advanced biological aging related to irreversible PTMs SP has been associated with the nontrivial interplay between somatic (molecular aging) and mental (psychological aging) health conditions. Through stress response systems (SRS), the environmental and psychological stressors contribute to the age-associated “collapse” of protein homochirality. The role of prevalent protein chirality and entropy of protein folding in biological aging is mainly overlooked. In a more generalized context, the time-dependent shift from enzymatic to the non-enzymatic transformation of biochirality might represent an important and yet underappreciated hallmark of aging. We provide the experimental arguments in support of the racemization theory of aging.


Author(s):  
Victor Vasilyevich Dyakin ◽  
Nika Victorovna Dyakina-Fagnano ◽  
Laura Beth McIntire ◽  
Vladimir Nikolaevich Uversky

In humans, age-associated degrading changes are observed in molecular and cellular processes underly the time-dependent decline in spatial navigation, time perception, cognitive and psy-chological abilities, and memory. Cross talk of biological, cognitive, and psychological clocks provides an integrative contribution to healthy and advanced aging. At the molecular level, ge-nome, proteome, and lipidome instability are widely recognized as the primary causal factors in aging. We narrow attention to the roles of protein aging linked to prevalent amino acids chirali-ty, enzymatic and spontaneous (non-enzymatic) post-translational modifications (PTMs SP), and non-equilibrium phase transitions. The homochirality of protein synthesis, resulting in the steady-state non-equilibrium condition of protein structure, makes them prone to multiple types of enzymatic and spontaneous PTMs, including racemization and isomerization. Spontaneous racemization leads to the loss of the balanced prevalent chirality. Advanced biological aging re-lated to irreversible PTMs SP has been associated with the nontrivial interplay between poor so-matic and mental health conditions. Through stress response systems (SRS), the environmental and psychological stressors contribute to the age-associated “collapse” of protein homochirality. The role of prevalent protein chirality and entropy of protein folding in biological aging is mainly overlooked. In a more generalized context, the time-dependent shift from enzymatic to the non-enzymatic transformation of biochirality might represent an important and yet un-der-appreciated hallmark of aging.


Author(s):  
Victor Vasilyevich Dyakin ◽  
Vladimir Nikolaevich Uversky

The universal chirality is the commonly accepted view of nature. Biological chirality is the distinct part of the more general phenomena. Following this view, all living organisms are characterized by the non-equilibrium state of their molecular constituents. From the thermodynamic perspective, the non-equilibrium state of biomolecular ensemble holds inevitable consequences being the substrate of spontaneous reactions directed to equilibrium (not associated with life) state. At the protein level, spontaneous biological reactions represent the natural part of proteins' post-translational modifications (PTMs). The essential contribution to the origin and maintenance of the non-equilibrium state belongs to prevalent bio-molecular chirality. Correspondently, spontaneous PTMs such as racemization and glycation, working against life-supporting prevalent chirality, are known as the significant determinants of protein misfolding, dysfunctions, and aggregation. Accumulation of aberrant protein during life-span allows consideration of time-dependent spontaneous racemization and glycation as protein aging. Spontaneous PTMs of proteins is occurring in the interaction with other forms of enzymatic and non-enzymatic PTMs. In this review, we are considering the contribution of spontaneous racemization and non-enzymatic glycosylation to protein aging.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 585 ◽  
Author(s):  
Victor V. Dyakin ◽  
Thomas M. Wisniewski ◽  
Abel Lajtha

Biochirality is the subject of distinct branches of science, including biophysics, biochemistry, the stereochemistry of protein folding, neuroscience, brain functional laterality and bioinformatics. At the protein level, biochirality is closely associated with various post-translational modifications (PTMs) accompanied by the non-equilibrium phase transitions (PhTs NE). PTMs NE support the dynamic balance of the prevalent chirality of enzymes and their substrates. The stereoselective nature of most biochemical reactions is evident in the enzymatic (Enz) and spontaneous (Sp) PTMs (PTMs Enz and PTMs Sp) of proteins. Protein chirality, which embraces biophysics and biochemistry, is a subject of this review. In this broad field, we focus attention to the amyloid-beta (Aβ) peptide, known for its essential cellular functions and associations with neuropathology. The widely discussed amyloid cascade hypothesis (ACH) of Alzheimer’s disease (AD) states that disease pathogenesis is initiated by the oligomerization and subsequent aggregation of the Aβ peptide into plaques. The racemization-induced aggregation of protein and RNA have been extensively studied in the search for the contribution of spontaneous stochastic stereo-specific mechanisms that are common for both kinds of biomolecules. The failure of numerous Aβ drug-targeting therapies requires the reconsolidation of the ACH with the concept of PTMs Sp. The progress in methods of chiral discrimination can help overcome previous limitations in the understanding of AD pathogenesis. The primary target of attention becomes the network of stereospecific PTMs that affect the aggregation of many pathogenic agents, including Aβ. Extensive recent experimental results describe the truncated, isomerized and racemized forms of Aβ and the interplay between enzymatic and PTMs Sp. Currently, accumulated data suggest that non-enzymatic PTMs Sp occur in parallel to an existing metabolic network of enzymatic pathways, meaning that the presence and activity of enzymes does not prevent non-enzymatic reactions from occurring. PTMs Sp impact the functions of many proteins and peptides, including Aβ. This is in logical agreement with the silently accepted racemization hypothesis of protein aggregation (RHPA). Therefore, the ACH of AD should be complemented by the concept of PTMs Sp and RHPA.


2019 ◽  
Vol 57 (8) ◽  
pp. 1153-1161
Author(s):  
Rachid Mahmoudi ◽  
Stéphane Jaisson ◽  
Sarah Badr ◽  
Yacine Jaidi ◽  
Laurie-Anne Bertholon ◽  
...  

Abstract Background Identifying frail elderly subjects is of paramount importance in order to conduct a tailored care. The characterization of frailty status is currently based on the collection of clinical data and on the use of various tools such as Fried’s criteria, which constitutes a difficult and time-consuming process. Up to now, no biological markers have been described as reliable tools for frailty characterization. We tested the hypothesis that a link between frailty and protein molecular aging existed. This study aimed therefore at determining whether post-translational modification derived products (PTMDPs), recognized as biomarkers of protein aging, were associated with frailty status in elderly subjects. Methods Frailty status was determined according to Fried’s criteria in 250 elderly patients (>65 years old) hospitalized in a short-term care unit. Serum concentrations of protein-bound PTMDPs, including carboxymethyllysine (CML), pentosidine, methylglyoxal-hydroimidazolone-1 and homocitrulline (HCit), were determined by liquid chromatography coupled with tandem mass spectrometry, and tissue content of advanced glycation end-products was assessed by skin autofluorescence (SAF) measurement. Associations between PTMDPs and frailty status were analyzed using logistic regression models. Results Frail patients had significantly (p<0.01) higher CML, HCit, and SAF values compared to non-frail and pre-frail subjects. By multivariate analysis, only HCit concentrations and SAF values remained associated with frailty status (p=0.016 and p=0.002, respectively), independently of age, comorbidities, renal function, C-reactive protein and albumin concentrations. Conclusions HCit and SAF are significantly associated with frailty status in elderly subjects. This study suggests that PTMDPs constitute promising biomarkers for identifying frail patients and guiding personalized patient care.


2017 ◽  
Vol 39 ◽  
pp. 78-86 ◽  
Author(s):  
Stephen J. Simpson ◽  
David G. Le Couteur ◽  
David Raubenheimer ◽  
Samantha M. Solon-Biet ◽  
Gregory J. Cooney ◽  
...  

2017 ◽  
Vol 37 (23) ◽  
Author(s):  
Alberto Bartolomé ◽  
Ana García-Aguilar ◽  
Shun-Ichiro Asahara ◽  
Yoshiaki Kido ◽  
Carlos Guillén ◽  
...  

ABSTRACT Mechanistic target of rapamycin complex 1 (MTORC1) is a critical negative regulator of general autophagy. We hypothesized that MTORC1 may specifically regulate autophagic clearance of damaged mitochondria. To test this, we used cells lacking tuberous sclerosis complex 2 (TSC2−/− cells), which show constitutive MTORC1 activation. TSC2−/− cells show MTORC1-dependent impaired autophagic flux after chemical uncoupling of mitochondria, increased mitochondrial-protein aging, and accumulation of p62/SQSTM1-positive mitochondria. Mitochondrial autophagy (mitophagy) was also deficient in cells lacking TSC2, associated with altered expression of PTEN-induced putative kinase 1 (PINK1) and PARK2 translocation to uncoupled mitochondria, all of which were recovered by MTORC1 inhibition or expression of constitutively active forkhead box protein O1 (FoxO1). These data prove the necessity of intact MTORC1 signaling to regulate two synergistic processes required for clearance of damaged mitochondria: (i) general autophagy initiation and (ii) PINK1/PARK2-mediated selective targeting of uncoupled mitochondria to the autophagic machinery.


Sign in / Sign up

Export Citation Format

Share Document