phagocytic ability
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 30)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Yifan Zhang ◽  
Jie Ding ◽  
Yiru Wang ◽  
Xiaoteng Feng ◽  
Min Du ◽  
...  

Guanxinkang decoction (GXK), a traditional Chinese medicinal drug, is used to treat cardiovascular disease. The aim of the study was to investigate the effects of GXK on inflammation in LDLR−/− mice and RAW264.7 cells. Fed with high fat diet for 12 weeks, the mice were randomly divided into six groups, then administered with oral 0.9% saline or GXK (7.24, 14.48, and 28.96 g/kg) or Atorvastatin (1.3 mg/kg) for 12 weeks. RAW 264.7 cells were induced with ox-LDL or ox-LDL plus different concentrations of GXK (1.25, 2.5, and 5 μg/ml), or ox-LDL plus GXK plus MAPKs activators. Serum lipid profiles and inflammatory cytokines were detected by ELISA, gene expression by RT-qPCR, plaque sizes by Oil Red O, α-SMA, caspase 3, NF-κB p65 and TNF-α production by immunofluorescence staining, and protein expression by Western Blot. The phagocytic ability of cells was determined by neutral red uptake assay. Efferocytosis-related proteins (AML, MERTK, TYRO3 and MFGE8) and MAPKs pathways were detected by Western Blot. Compared to mice fed with high fat diet, the mice with GXK showed lower cholesterol, triglyceride, low-density lipoprotein cholesterol, IL-1β, IL-6, and TNF-α, smaller plaque sizes, higher α-SMA, and lower caspase 3 and NF-κB p65 in aortic roots. RAW264.7 cells treated with ox-LDL plus GXK had lower IL-1β, IL-6, and TNF-α. GXK also increased the phagocytic ability of cells. High levels of AML, MERTK, TYRO3 and MFGE8, and decreased levels of iNOS, VCAM-1, LOX-1 and MCP-1, and phosphorylation of ERK1/2, JNK, p38, and NF-κB were detected in GXK-treated group. MAPKs activators reversed the effects of GXK in repressing inflammation and promoting phagocytosis. These results suggested that GXK could attenuate atherosclerosis and resolve inflammation via efferocytosis and MAPKs signaling pathways in LDLR−/− mice and RAW264.7 cells.


2021 ◽  
Vol 22 (22) ◽  
pp. 12188
Author(s):  
Hong-Bo Fan ◽  
Yuan Zou ◽  
Qing Han ◽  
Qian-Wang Zheng ◽  
Ying-Li Liu ◽  
...  

Enhancing the phagocytosis of immune cells with medicines provides benefits to the physiological balance by removing foreign pathogens and apoptotic cells. The fungal immunomodulatory protein (FIP) possessing various immunopotentiation functions may be a good candidate for such drugs. However, the effect and mechanism of FIP on the phagocytic activity is limitedly investigated. Therefore, the present study determined effects of Cordyceps militaris immunomodulatory protein (CMIMP), a novel FIP reported to induce cytokines secretion, on the phagocytosis using three different types of models, including microsphere, Escherichia Coli and Candida albicans. CMIMP not only significantly improved the phagocytic ability (p < 0.05), but also enhanced the bactericidal activity (p < 0.05). Meanwhile, the cell size, especially the cytoplasm size, was markedly increased by CMIMP (p < 0.01), accompanied by an increase in the F-actin expression (p < 0.001). Further experiments displayed that CMIMP-induced phagocytosis, cell size and F-actin expression were alleviated by the specific inhibitor of TLR4 (p < 0.05). Similar results were observed in the treatment with the inhibitor of the NF-κB pathway (p < 0.05). In conclusion, it could be speculated that CMIMP promoted the phagocytic ability of macrophages through increasing F-actin expression and cell size in a TLR4-NF-κB pathway dependent way.


Author(s):  
Xiaolong Sheng ◽  
Jinyun Zhao ◽  
Miao Li ◽  
Yan Xu ◽  
Yi Zhou ◽  
...  

Macrophage phagocytosis contributes predominantly to processing central nervous system (CNS) debris and further facilitates neurological function restoration after CNS injury. The aims of this study were to evaluate the effect of bone marrow mesenchymal stem cells (BMSC)-derived exosomes (BMSC-Exos) on the phagocytic capability of macrophages to clear myelin debris and to investigate the underlying molecular mechanism during the spinal cord injury (SCI) process. This work reveals that monocyte-derived macrophages (MDMs) infiltrating into the SCI site could efficiently engulf myelin debris and process phagocytic material. However, the phagocytic ability of macrophages to clear tissue debris is compromised after SCI. The administration of BMSC-Exos as an approach for SCI treatment could rescue macrophage normal function by improving the phagocytic capability of myelin debris internalization, which is beneficial for SCI repair, as evidenced by better axon regrowth and increased hindlimb locomotor functional recovery in a rodent model. Examination of macrophage treatment with BMSC-Exos revealed that BMSC-Exos could promote the capacity of macrophages to phagocytose myelin debris in vitro and could create a regenerative microenvironment for axon regrowth. In addition, we confirmed that BMSC-Exo treatment resulted in improved phagocytosis of engulfed myelin debris by promoting the expression of macrophage receptor with collagenous structure (MARCO) in macrophages. The inhibition of MARCO with PolyG (a MARCO antagonist) impaired the effect of BMSC-Exos on the phagocytic capacity of macrophages and resulted in compromised myelin clearance at the lesion site, leading to further tissue damage and impaired functional healing after SCI. In conclusion, these data indicated that targeting the phagocytic ability of macrophages may have therapeutic potential for the improvement in functional healing after SCI. The administration of BMSC-Exos as a cell-free immune therapy strategy has wide application prospects for SCI treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuanyuan Wu ◽  
Zinah D. Zwaini ◽  
Nigel J. Brunskill ◽  
Xinyue Zhang ◽  
Hui Wang ◽  
...  

Properdin, a positive regulator of complement alternative pathway, participates in renal ischemia–reperfusion (IR) injury and also acts as a pattern-recognition molecule affecting apoptotic T-cell clearance. However, the role of properdin in tubular epithelial cells (TECs) at the repair phase post IR injury is not well defined. This study revealed that properdin knockout (PKO) mice exhibited greater injury in renal function and histology than wild-type (WT) mice post 72-h IR, with more apoptotic cells and macrophages in tubular lumina, increased active caspase-3 and HMGB1, but better histological structure at 24 h. Raised erythropoietin receptor by IR was furthered by PKO and positively correlated with injury and repair markers. Properdin in WT kidneys was also upregulated by IR, while H2O2-increased properdin in TECs was reduced by its small-interfering RNA (siRNA), with raised HMGB1 and apoptosis. Moreover, the phagocytic ability of WT TECs, analyzed by pHrodo Escherichia coli bioparticles, was promoted by H2O2 but inhibited by PKO. These results were confirmed by counting phagocytosed H2O2-induced apoptotic TECs by in situ end labeling fragmented DNAs but not affected by additional serum with/without properdin. Taken together, PKO results in impaired phagocytosis at the repair phase post renal IR injury. Properdin locally produced by TECs plays crucial roles in optimizing damaged cells and regulating phagocytic ability of TECs to effectively clear apoptotic cells and reduce inflammation.


2021 ◽  
Vol 14 (8) ◽  
pp. 1160-1167
Author(s):  
Xin-Yue Zhu ◽  
◽  
Ting Zhang ◽  
Su-Jun Liu ◽  
Xin-Yue Bai ◽  
...  

AIM: To explore an xeno-free and defined coating substrate suitable for the culture of H9 human embryonic stem cell-derived retinal pigment epithelial (hES-RPE) cells in vitro, and compare the behaviors and functions of hES-RPE cells on two culture substrates, laminin521 (LN-521) and truncated recombinant human vitronectin (VTN-N). METHODS: hES-RPE cells were used in the experiment. The abilities of LN-521 and VTN-N at different concentrations to adhere to hES-RPE cells were compared with a high-content imaging system. Quantitative real-time polymerase chain reaction was used to evaluate RPE-specific gene expression levels midway (day 10) and at the end (day 20) of the time course. Cell polarity was observed by immunofluorescent staining for apical and basal markers of the RPE. The phagocytic ability of hES-RPE cells was identified by flow cytometry and immunofluorescence. RESULTS: The cell adhesion assay showed that the ability of LN-521 to adhere to hES-RPE cells was dose-dependent. With increasing coating concentration, an increasing number of cells attached to the surface of LN-521-coated wells. In contrast, VTN-N presented a strong adhesive ability even at a low concentration. The optimal concentration of LN-521 and VTN-N required to coat and adhesion to hES-RPE cells were 2 and 0.25 µg/cm2, respectively. Furthermore, both LN-521 and VTN-N could facilitate adoption of the desired cobblestone cellular morphology with tight junction and showed polarity by the hES-RPE cells. However, hES-RPE cells cultivated in VTN-N had a greater phagocytic ability, and it took less time for these hES-RPE cells to mature. CONCLUSION: VTN-N is a more suitable coating substrate for cultivating hES-RPE cells.


2021 ◽  
Author(s):  
Preeti Sharma ◽  
Anjali Vijaykumar ◽  
Jayashree Vijaya Raghavan ◽  
Supriya Rajendra Rananaware ◽  
Alakesh Alakesh ◽  
...  

AbstractHumans are exposed to numerous synthetic foreign particulates in the form of environmental pollutants and diagnostic or therapeutic agents. Specialized immune cells (phagocytes) clear these particulates by phagocytosing and attempting to degrade them. The process of recognition and internalization of the particulates may trigger changes in the function of phagocytes. Some of these changes, especially the ability of a particle-loaded phagocyte to take up and neutralize pathogens, remains poorly studied. Herein, we demonstrate that the uptake of non-stimulatory cargo-free particles enhances the phagocytic ability of monocytes, macrophages and neutrophils. The enhancement in phagocytic ability was independent of particle properties, such as size or the base material constituting the particle. Additionally, we show that the increased phagocytosis was not a result of cellular activation or cellular heterogeneity but was driven by changes in cell membrane fluidity and cellular compliance. A consequence of the enhanced phagocytic activity was that particulate-laden immune cells neutralize E. coli faster in culture. Moreover, when administered in mice as a prophylactic, particulates enable faster clearance of E. coli and S. epidermidis. Together, we demonstrate that the process of uptake induces cellular changes that favor additional phagocytic events. This study provides insights into using non-stimulatory cargo-free particles to engineer immune cell functions for applications involving faster clearance of phagocytosable particulates.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1650
Author(s):  
Priscila Calle ◽  
Soraya Játiva ◽  
Selene Torrico ◽  
Angeles Muñoz ◽  
Miriam García ◽  
...  

Phagocytosis is an inherent function of tissue macrophages for the removal of apoptotic cells and cellular debris during acute and chronic injury; however, the dynamics of this event during fibrosis development is unknown. We aim to prove that during the development of kidney fibrosis in the unilateral ureteral obstruction (UUO) model, there are some populations of macrophage with a reduced ability to phagocytose, and whether the infusion of a population of phagocytic macrophages could reduce fibrosis in the murine model UUO. For this purpose, we have identified the macrophage populations during the development of fibrosis and have characterized their phagocytic ability and their expression of CPT1a. Furthermore, we have evaluated the therapeutic effect of macrophages overexpressing CPT1a with high phagocytic skills. We evidenced that the macrophage population which exhibits high phagocytic ability (F4/80low-CD11b) in fibrotic animals decreases during the progression of fibrosis while the macrophage population with lower phagocytic ability (F4/80high-CD11b) in fibrotic conditions, conversely, increases and CPT1a macrophage cell therapy with a strengthening phagocytic ability is associated with a therapeutic effect on kidney fibrosis. We have developed a therapeutic approach to reduce fibrosis in the UUO model by enrichment of the kidney resident macrophage population with a higher proportion of exogenous phagocytic macrophages overexpressing CPT1a.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu Zhang ◽  
Li-hua Tang ◽  
Jia Lu ◽  
Li-ming Xu ◽  
Bao-li Cheng ◽  
...  

Abstract Background Sepsis is a critical challenge for the older adults as the immune function is less responsive by aging. Although cell numbers seem preserved in the older adults, macrophages present age-related function decline, which including reduced chemokines, phagocytosis, and autophagy. ABT-263, an inhibitor of the anti-apoptotic protein Bcl-2, is reported had a senolytic effect which can selectively clear the senescent cells in vivo and rejuvenate the aged tissues. Methods We treated the aged (12–16 months) and young (4–6 months) C57BL/6 mouse with ABT-263, then gave the animals cecal slurry injection to induce sepsis to observe the effect of senolytic compound ABT-263 on the survival rate of sepsis. Additionally, we isolated peritoneal macrophages from the aged mouse to investigate the cell function and molecular mechanism. 3-methyladenine (3-MA), a phosphatidylinositol 3-kinases (PI3K) inhibitor, and rapamycin, an autophagy-enhancer, were used to block or mimic the autophagy, respectively. RT-PCR and Western Blot were used to detect autophagy related gene and protein changes in sepsis. EGFP-expressing E. coli was used as a marker to evaluate the phagocytic ability of macrophages. Results The results showed ABT-263 treatment improved the survival rate of sepsis in the aged mouse which related to autophagy, while blocking the autophagy can eliminate this effect. It is revealed that ABT-263 enhanced the phagocytic ability of the peritoneal macrophages by increasing the Trem-2 receptor. Additionally, ABT-263 blocked the binding of Bcl-2 to Beclin-1, thus induced Beclin-1-dependent autophagy. Conclusion ABT-263 enhanced the macrophage function in aged mouse by increasing the Trem-2 receptors and inducing a beclin-1-dependent autophagy, consequently, protected the aged mouse from sepsis.


Sign in / Sign up

Export Citation Format

Share Document