vp1 capsid protein
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 1)

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2433
Author(s):  
Kay Childs ◽  
Nicholas Juleff ◽  
Katy Moffat ◽  
Julian Seago

Foot-and-mouth disease, caused by foot-and-mouth disease virus (FMDV), is an economically devastating disease affecting several important livestock species. FMDV is antigenically diverse and exists as seven serotypes comprised of many strains which are poorly cross-neutralised by antibodies induced by infection or vaccination. Co-infection and recombination are important drivers of antigenic diversity, especially in regions where several serotypes co-circulate at high prevalence, and therefore experimental systems to study these events in vitro would be beneficial. Here we have utilised recombinant FMDVs containing an HA or a FLAG epitope tag within the VP1 capsid protein to investigate the products of co-infection in vitro. Co-infection with viruses from the same and from different serotypes was demonstrated by immunofluorescence microscopy and flow cytometry using anti-tag antibodies. FLAG-tagged VP1 and HA-tagged VP1 could be co-immunoprecipitated from co-infected cells, suggesting that newly synthesised capsids may contain VP1 proteins from both co-infecting viruses. Furthermore, we provide the first demonstration of trans-encapsidation of an FMDV genome into capsids comprised of proteins encoded by a co-infecting heterologous virus. This system provides a useful tool for investigating co-infection dynamics in vitro, particularly between closely related strains, and has the advantage that it does not depend upon the availability of strain-specific FMDV antibodies.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2058
Author(s):  
Yufang Yi ◽  
Shuxia Wang ◽  
Xiaoli Wang ◽  
Pei Xiong ◽  
Qingwei Liu ◽  
...  

Human noroviruses are a common pathogen causing acute gastroenteritis worldwide. Among all norovirus genotypes, GII.3 is particularly prevalent in the pediatric population. Here we report the identification of two distinct blockade antibody epitopes on the GII.3 capsid. We generated a panel of monoclonal antibodies (mAbs) from mice immunized with virus-like particle (VLP) of a GII.3 cluster 3 strain. Two of these mAbs, namely 8C7 and 8D1, specifically bound the parental GII.3 VLP but not VLPs of GII.4, GII.17, or GI.1. In addition, 8C7 and 8D1 efficiently blocked GII.3 VLP binding with its ligand, histo-blood group antigens (HBGA). These data demonstrate that 8C7 and 8D1 are GII.3-specific blockade antibodies. By using a series of chimeric VLPs, we mapped the epitopes of 8C7 and 8D1 to residues 385–400 and 401–420 of the VP1 capsid protein, respectively. These two blockade antibody epitopes are highly conserved among GII.3 cluster 3 strains. Structural modeling shows that the 8C7 epitope partially overlaps with the HBGA binding site (HBS) while the 8D1 epitope is spatially adjacent to HBS. These findings may enhance our understanding of the immunology and evolution of GII.3 noroviruses.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1454
Author(s):  
Birthe Reinecke ◽  
Mara Klöhn ◽  
Yannick Brüggemann ◽  
Volker Kinast ◽  
Daniel Todt ◽  
...  

Since its first discovery by Arnold Theiler in 1918, serum hepatitis also known as Theiler’s disease has been reported worldwide, causing idiopathic acute hepatitis and liver failure in horses. Recent studies have suggested a novel parvovirus, named equine parvovirus hepatitis (EqPV-H), to be associated with Theiler’s disease. Despite the severity and potential fatality of EqPV-H infection, little is known about the possibility of developing chronic infections and putative cross-species infection of equine sister species. In the present longitudinal study, we employed qPCR analysis, serology, and biochemical testing as well as pathology examination of liver biopsies and sequence analysis to investigate potential chronic EqPV-H infection in an isolated study cohort of in total 124 horses from Germany over five years (2013–2018). Importantly, our data suggest that EqPV-H viremia can become chronic in infected horses that do not show biochemical and pathological signs of liver disease. Phylogenetic analysis by maximum likelihood model also confirms high sequence similarity and nucleotide conservation of the multidomain nuclear phosphoprotein NS1 sequences from equine serum samples collected between 2013–2018. Moreover, by examining human, zebra, and donkey sera for the presence of EqPV-H DNA and VP1 capsid protein antibodies, we found evidence for cross-species infection in donkey, but not to human and zebra. In conclusion, this study provides proof for the occurrence of persistent EqPV-H infection in asymptomatic horses and cross-species EqPV-H detection in donkeys.


Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 199
Author(s):  
Mei-Ling Li ◽  
Shin-Ru Shih ◽  
Blanton S. Tolbert ◽  
Gary Brewer

Enterovirus A71 (EV-A71) is a major causative agent of hand, foot, and mouth disease (HFMD) and herpangina. Moreover, EV-A71 infection can lead to neurological complications and death. Vaccination is the most efficient way to control virus infection. There are currently three inactivated, whole EV-A71 vaccines licensed by the China NMPA (National Medical Products Administration). Several other types of vaccines, such as virus-like particles and recombinant VP1 (capsid protein), are also under development. In this review, we discuss recent advances in the development of EV-A71 vaccines.


Author(s):  
David G. Karlin

Adeno-associated viruses (AAVs, genus dependoparvovirus) are promising gene therapy vectors. In strains AAV1-12, the capsid gene VP1 encodes a recently discovered protein, MAAP, in an overlapping frame. MAAP binds the cell membrane by an unknown mechanism. We discovered that MAAP is also encoded in bovine AAV and in porcine AAVs (which have shown promise for gene transfer into muscle tissues), in which it is probably translated from a non-canonical start codon. MAAP is predicted to be mostly disordered except for a predicted C-terminal, membrane-binding amphipathic α-helix. MAAP has a highly unusual composition. In particular, it lacks internal methionines, and is devoid of tyrosines in most strains. Unexpectedly, we discovered that the N-terminus of VP1 also lacks several amino acids. In all AAVs that encode MAAP, the first 200 aas of VP1 are devoid of internal methionines, probably owing to a selection against ATG codons that could prevent translation of MAAP and of capsid isoforms (VP2, VP3). The N-terminus of VP1 also lacks cysteines, likely to avoid the formation of disulfide bridges when it becomes exposed outside of the capsid during post-endocytic trafficking. Finally, the region common to VP1 and VP2 lacks tyrosine in the vast majority of AAVs that encode MAAP. Avoiding these "forbidden" aas in MAAP and VP1 when creating recombinant AAV capsids might increase the efficiency of capsid design. Conversely, the presence of "forbidden" aas in some rare strains probably indicates that they have unusual properties that could help us understand the viral cycle.


Viruses ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 68 ◽  
Author(s):  
Eero Hietanen ◽  
Petri Susi

Coxsackievirus A9 (CVA9) is an enterically transmitted enterovirus and one of the most pathogenic type among human enteroviruses. CVA9 isolates use a distinctive RGD (Arg-Gly-Asp) motif within VP1 capsid protein that defines its ability to bind to integrin receptor(s) for cellular entry. To investigate CVA9 evolution and pathogenicity, genetic relationships and recombination events were analyzed between 54 novel clinical isolates of CVA9, as well as 21 previously published full length CVA9 sequences from GenBank. Samples were investigated by partial sequencing of the novel VP1 and 3Dpol genes, as well as including the corresponding areas from GenBank sequences. Phylogenetic analyses were combined with clinical data in a further attempt to analyze whether sequence evolution reflects CVA9 pathogenicity in the phylogenies. Furthermore, VP1 gene was also analyzed for receptor binding sites including the RGD motif and the putative heparan sulfate (HS) site. Analysis of the 559-nucleotide-long VP1 sequences identified six clades. Although most of the strains within each clade showed geographical clustering, the grouping pattern of the isolates in the analysis of the VP1 gene was strikingly different from grouping of 3Dpol, which suggests that recombination events may have occurred in the region encoding the nonstructural proteins. Inclusion of clinical data did not provide any evidence of symptom based phylogenetic clustering of CVA9 isolates. Amino acid sequence analysis of the VP1 polypeptide demonstrated that the RGD motif was fully conserved among the isolates while the putative HS binding site was only found in one isolate. These data suggest that integrin binding is essential for virus tropism, but do not explain the symptom repertoire.


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
N Kosoltanapiwat ◽  
N Income ◽  
D Cadar ◽  
J Schmidt-Chanasit ◽  
J Tongshoob

Abstract Bovine enteroviruses (BEV) are non-enveloped RNA viruses of the genus Enterovirus, family Picornaviridae, which are commonly found in cattle. They have been classified into two species, enterovirus E (EV-E) and enterovirus F (EV-F). The viruses were previously considered non-pathogenic, but recent evidences suggest their association with pathogenesis in cattle. BEV-like enteroviruses have also been increasingly isolated from a wide range of animals, such as sheep, goats, horses, geese, possum, and deer, from many countries. The isolation and characterization of novel enteroviruses expands the range of the genus. Our data show that both EV-E and EV-F are circulating in cattle in Thailand. The viruses have been detected in 35–67 per cent of dairy and meat cattle feces in Kanchanaburi Province. Recently, we retrieved EV-E isolates from cattle feces by virus isolation in Madin-Darby Bovine Kidney cells. Four virus isolates were subjected to whole-genome sequencing using Illumina next-generation sequencing. A phylogenetic analysis of VP1 capsid protein, which is used for virus genotyping, suggested that there are at least two EV-E genotypes circulating in cattle in the area of study. Two virus strains, closely related to EV-E1 with amino acid sequence identities >88 per cent were identified as EV-E1. The other two strains, closely related to EV-E2 with amino acid sequence identities < 85 per cent, were likely to constitute a new EV-E genotype separate from the existing EV-E2.


2017 ◽  
Vol 91 (8) ◽  
Author(s):  
Chen Fan ◽  
Xiaohua Ye ◽  
Zhiqiang Ku ◽  
Liangliang Kong ◽  
Qingwei Liu ◽  
...  

ABSTRACT Beta-propiolactone (BPL) is an inactivating agent that is widely used in the vaccine industry. However, its effects on vaccine protein antigens and its mechanisms of action remain poorly understood. Here we present cryo-electron microscopy (cryo-EM) structures of BPL-treated coxsackievirus A16 (CVA16) mature virions and procapsids at resolutions of 3.9 Å and 6.5 Å, respectively. Notably, both particles were found to adopt an expanded conformation resembling the 135S-like uncoating intermediate, with characteristic features including an opened 2-fold channel, the externalization of the N terminus of VP1 capsid protein, and the absence of pocket factor. However, major neutralizing epitopes are very well preserved on these particles. Further biochemical analyses revealed that BPL treatment impairs the abilities of CVA16 particles to bind to the attachment receptor heparan sulfate and to a conformation-dependent monoclonal antibody in a BPL dose-dependent manner, indicating that BPL is able to modify surface-exposed amino acid residues. Taken together, our results demonstrate that BPL treatment may induce alteration of the overall structure and surface properties of a nonenveloped viral capsid, thus revealing a novel mode of action of BPL. IMPORTANCE Beta-propiolactone (BPL) is commonly used as an inactivating reagent to produce viral vaccines. It is recognized that BPL inactivates viral infectivity through modification of viral nucleic acids. However, its effect on viral proteins remains largely unknown. Here, we present high-resolution cryo-EM structures of BPL-treated coxsackievirus A16 (CVA16) mature virions and procapsids, which reveals an expanded overall conformation and characteristic features that are typical for the 135S-like uncoating intermediate. We further show that the BPL concentration affects the binding of inactivated CVA16 particles to their receptor/antibody. Thus, BPL treatment can alter the overall structure and surface properties of viral capsids, which may lead to antigenic and immunogenic variations. Our findings provide important information for future development of BPL-inactivated vaccines.


2016 ◽  
Vol 90 (23) ◽  
pp. 10459-10471 ◽  
Author(s):  
Cibele M. Gaido ◽  
Shane Stone ◽  
Abha Chopra ◽  
Wayne R. Thomas ◽  
Peter N. Le Souëf ◽  
...  

ABSTRACTRhinovirus (RV) species A and C are the most frequent cause of respiratory viral illness worldwide, and RV-C has been linked to more severe exacerbations of asthma in young children. Little is known about the immune responses to the different RV species, although studies comparing IgG1 antibody titers found impaired antibody responses to RV-C. Therefore, the aim of this study was to assess whether T-cell immunity to RV-C is similarly impaired. We measured T-cell proliferation to overlapping synthetic peptides covering the entire VP1 capsid protein of an RV-A and RV-C genotype for 20 healthy adult donors. Human leukocyte antigen (HLA) was typed in all the donors in order to investigate possible associations between the HLA type and RV peptide recognition. Total and specific IgG1 antibody titers to the VP1 proteins of both RV-A and RV-C were also measured to examine associations between the antibody and T-cell responses. We identified T-cell epitopes that are specific to and representative of each RV-A and RV-C species. These epitopes stimulated CD4+-specific T-cell proliferation, with similar magnitudes of response for both RV species. All the donors, independent of their HLA-DR or -DQ type, were able to recognize the immunodominant RV-A and -C regions of VP1. Furthermore, the presence or absence of specific antibody titers was not related to changes in T-cell recognition. Our results indicate a dissociation between the antibody and T-cell responses to rhinoviruses. The species-representative T-cell epitopes identified in this study are valuable tools for future studies investigating T-cell responses to the different RV species.IMPORTANCERhinoviruses (RVs) are mostly associated with the common cold and asthma exacerbations, although their contributions to most upper and lower respiratory tract diseases have increasingly been reported. Species C (RV-C) has been associated with more frequent and severe asthma exacerbations in young children and, along with RV-A, is the most clinically relevant species. Little is known about how our immune system responds to rhinoviruses, and there are limited tools to study specific adaptive immunity against each rhinovirus species. In this study, we identified immunodominant T-cell epitopes of the VP1 proteins of RV-A and RV-C, which are representative of each species. The study found that T-cell responses to RV-A and RV-C were of similar magnitudes, in contrast with previous findings showing RV-C-specific antibody responses were low. These findings will provide the basis for future studies on the immune response to rhinoviruses and can help elucidate the mechanisms of severity of rhinovirus-induced infections.


Sign in / Sign up

Export Citation Format

Share Document