Physicochemical processes in the main river of Mexico using geochemical models

Author(s):  
Selene Olea-Olea ◽  
Javier Alcocer ◽  
Luis A. Oseguera

<p>The Usumacinta River is the most extensive tropical fluvial system in North America and the principal river in Mexico and the tenth of North America. Diverse and growing anthropogenic activities (land-use change, agriculture, and urban development) modify water quality. However, to separate natural (e.g., geology) from anthropic factors responsible for this system characteristics, we looked to evaluate geological environment’s influence on the river’s water quality.</p><p>Water and sediment samples were collected along the mainstem and principal tributaries in the rainy and the dry seasons (2017-2018). We analyzed the major ionic composition in water and metals in sediments. We applied inverse and evaporation models (PHREEQC code) to reveal the physicochemical reactions taking place in the river.</p><p>The inverse models in the middle basin in both seasons showed the influence of ion-exchange between Ca and K, dissolution of dolomite, and precipitation of kaolinite and calcite, whereas in the lower basin in the rainy season suggested the chemical composition is controlled by ion-exchange among Ca, Na and K, dissolution of dolomite, halite, plagioclase, and feldspar and precipitation of calcite, gypsum, and kaolinite. In addition, the evaporation models in the dry season in the lower basin demonstrate the dominant process taking place is the precipitation of calcite, dolomite, gypsum, halite, and kaolinite.</p><p>We found that Cr and Ni are the most abundant metals in the sediments along the river. The geological environment in the basin suggests that the volcanic rocks with felsic minerals could be the source of Ni, whereas sedimentary rocks such as shales and clays could be the source of Cr.</p><p>The use of geochemical models in river systems is of great relevance to understanding the presence of major ions concentrations in water and their seasonal and spatial variations, as well the physicochemical processes (i.e., ion-exchange, dissolution, precipitation, redox reactions, and so on) that allow associating or discard the presence of metals.</p>

2020 ◽  
Vol 12 (1) ◽  
pp. 203-219
Author(s):  
Wei Li ◽  
Xiaohong Chen ◽  
Linshen Xie ◽  
Gong Cheng ◽  
Zhao Liu ◽  
...  

AbstractGroundwater chemical evolution is the key to ensuring the sustainability of local society and economy development. In this study, four river sections and 59 groundwater wells are investigated in the Longgang River (L.R.) basin in South China. Comprehensive hydrochemical analysis methods are adopted to determine the dominant factors controlling the chemical evolution of the local phreatic groundwater and the potential impact of human activities on groundwater quality. The results indicate that the ionic composition of the local phreatic groundwater is dominated by Ca2+ (0.9–144.0 mg/L), HCO3− (4.4–280.0 mg/L), and SO42− (1.0–199.0 mg/L). Ca–Mg–HCO3, Ca–Na–HCO3, and Na–Ca–HCO3 are the major groundwater hydrochemical facies. Water–rock interactions, such as the dissolution of calcite and dolomite, are the primary source of the major ions in the local groundwater. Cation-exchange reaction has its effects on the contents of Ca2+, Mg2+, and Na+. Ammonia concentration of the sampling sections in the L.R. increases from 0.03 to 2.01 mg/L along the flow direction. Groundwater nitrate in the regions of the farmland is attributed to the lowest level of the groundwater quality standards of China, while the same test results are obtained for heavy metals in the industrial park and landfill, suggesting a negative impact of the anthropogenic activities on the local phreatic groundwater quality.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ajay Govind Bhatt ◽  
Anand Kumar ◽  
Priya Ranjan Trivedi

AbstractThis study is conducted along the middle Gangetic floodplain, to investigate the hydrogeochemical characteristics and suitability of groundwater for irrigation and human consumptions. Altogether 65 groundwater samples were collected and analyzed for major ions and water quality parameters. pH of all the samples except 1 is found > 7, which suggests alkaline aquifer condition. Groundwater samples predominately belong to Ca-Mg-HCO3 water type followed by Na-HCO3, Mg-HCO3 and Mg-SO4 water types. Hierarchical cluster analysis (HCA) combines groundwater into two distinct groups, Group 1 is found as less mineralized as the average EC value is found 625.3 μS/cm, while it is found 1375 μS/cm for Group 2. The results of correlation analysis and PCA suggest influence of natural and anthropogenic activities on groundwater. PCA extracts four major PCs which describes 71.7% of total variance. PC1 indicates influence of both lithogenic and anthropogenic activities on groundwater quality. PC2 and PC3 infer natural factors, and PC4 suggests influence of anthropogenic activities on groundwater. Exceeding concentration of F−, Fe and Mn above WHO guidelines are found as major public health concern. WQI of all except 4 groundwater samples suggests excellent to good water quality; however, 23% of the samples are not suitable based on WPI values. Irrigation indices suggest that groundwater is mostly suitable for irrigation; however, 10.7%, 12.3% and 3% samples for RSBC, MAR and KR, respectively, exceed the recommended limits and are unsuitable for irrigation. A proper management strategy and quality assurance is recommended before groundwater consumption and use in the study area.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2293
Author(s):  
Kou ◽  
Li ◽  
Hua ◽  
Li

Water scarcity in arid regions is exacerbated by water quality degradation from anthropogenic contamination. In water-scarce regions, it is crucial to identify hydrochemical characteristics and pollution sources for effective water resource management. In this study, the Hei River—located in the Loess Plateau of China, which is an arid region with substantial anthropogenic-induced environmental changes—was selected as the study area to investigate these issues. The major ions of 242 streamflow and groundwater samples were measured during the 2014 and 2015 dry and flood seasons. Using a Piper diagram, a fuzzy membership function, a Gibbs diagram, and a forward model, the hydrochemical facies and water quality of streamflow and groundwater were investigated, and the main river solute sources and relative contributions were determined using quantitative and qualitative methods. The total dissolved solids were 279.6 ± 127.8 mg·L−1 for streamflow and 354.0 ± 157.4 mg·L−1 for groundwater, indicating low salinity water. However, the hydrochemical characteristics varied with season and location. Qualitatively, the atmospheric inputs, human activities, and rock weathering all contributed solutes to the waters but with varying contributions. The following are the mean contributions of analyzed solute source: silicate weathering (45.1 ± 1.1%) > carbonate weathering (34.1 ± 1.6%) > evaporite dissolution (13.7 ± 2.4%) > atmospheric input (5.4 ± 0.1%) > anthropogenic input (1.7 ± 0.1%). In general, water quality was satisfactory, as the majority of samples conformed to drinking water standards. The samples had good water quality because the river solutes were not heavily affected by anthropogenic activities and were primarily controlled by rock weathering. However, localized areas of high anthropogenic impact were identified. Such locations should be prioritized for pollution control and water resource management.


2020 ◽  
pp. 3002-3008
Author(s):  
Ikhlas M. Makki ◽  
Jwad K. Manii

This research deals with analyzing samples of water from the Euphrates River before and after (50m, 200m, 500m, and 1000m from the outflow)the power plant of AL-Musayyab. A Water Quality Index (WQI) analysis was performed, which is a helpful tool for rapid estimation of the quality of any water resource.. Water quality of  the river was classified into good, poor, very poor, and unsuitable for drinking, based on physico-chemical parameters such as pH, total hardness (TH), and concentrations of the major ions of calcium (Ca+2), sodium (Na+), magnesium (Mg+2), potassium (K+), nitrate (NO3-2), sulphate (SO4-2), phosphate (PO4-2), and Chloride (Cl-), which indicate the extent of pollution. The study shows the deterioration of water quality, with the main candidate causes of being the direct discharge of the power plant into the river and high anthropogenic activities.


2017 ◽  
Vol 68 (8) ◽  
pp. 1744-1748
Author(s):  
Catalina Stoica ◽  
Gabriela Geanina Vasile ◽  
Alina Banciu ◽  
Daniela Niculescu ◽  
Irina Lucaciu ◽  
...  

During the past few decades, the anthropogenic activities induced worldwide changes in the ecological systems, including the aquatic systems. This work analysed the contamination level of groundwater resources from a rural agglomeration (Central-Western part of Prahova County) by biological and physico-chemical approaches. The study was performed during the autumn of 2016 on several sampling sites (four drilling wells, depth higher than 100 m supplying three villages; two wells lower than 10 m depth and one spring). The water quality was evaluated by comparison with the limit values of the drinking water quality legislation (Law no.458/2002) and the Order 621/2014 (applicable to all groundwater bodies of Romania). The results showed that phenols and metals (iron and manganese) exceeded the threshold values in all sampling sites. Moreover, the anthropogenic factors including agriculture, use of fertilizers, manures, animal husbandry led to an increase of the bacterial load, particularly at wells sites.


2014 ◽  
Vol 49 (4) ◽  
pp. 372-385
Author(s):  
Shawn Burdett ◽  
Michael Hulley ◽  
Andy Smith

A hydrologic and water quality model is sought to establish an approach to land management decisions for a Canadian Army training base. Training areas are subjected to high levels of persistent activity creating unique land cover and land-use disturbances. Deforestation, complex road networks, off-road manoeuvres, and vehicle stream crossings are among major anthropogenic activities observed to affect these landscapes. Expanding, preserving and improving the quality of these areas to host training activities for future generations is critical to maintain operational effectiveness. Inclusive to this objective is minimizing resultant environmental degradation, principally in the form of hydrologic fluctuations, excess erosion, and sedimentation of aquatic environments. Application of the Soil Water Assessment Tool (SWAT) was assessed for its ability to simulate hydrologic and water quality conditions observed in military landscapes at 5th Canadian Division Support Base (5 CDSB) Gagetown, New Brunswick. Despite some limitations, this model adequately simulated three partial years of daily watershed outflow (NSE = 0.47–0.79, R2 = 0.50–0.88) and adequately predicted suspended sediment yields during the observation periods (%d = 6–47%) for one highly disturbed sub-watershed in Gagetown. Further development of this model may help guide decisions to develop or decommission training areas, guide land management practices and prioritize select landscape mitigation efforts.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 857
Author(s):  
Maria-Alexandra Hoaghia ◽  
Ana Moldovan ◽  
Eniko Kovacs ◽  
Ionut Cornel Mirea ◽  
Marius Kenesz ◽  
...  

Human activities and natural factors determine the hydrogeochemical characteristics of karst groundwaters and their use as drinking water. This study assesses the hydrogeochemical characteristics of 14 karst water sources in the Apuseni Mountains (NW Romania) and their potential use as drinking water sources. As shown by the Durov and by the Piper diagrams, the chemical composition of the waters is typical of karst waters as it is dominated by HCO3− and Ca2+, having a circumneutral to alkaline pH and total dissolved solids ranging between 131 and 1092 mg L−1. The relation between the major ions revealed that dissolution is the main process contributing to the water chemistry. Limestone and dolostone are the main Ca and Mg sources, while halite is the main Na and Cl source. The Gibbs diagram confirmed the rock dominance of the water chemistry. The groundwater quality index (GWQI) showed that the waters are of excellent quality, except for two waters that displayed medium and good quality status. The quality of the studied karst waters is influenced by the geological characteristics, mainly by the water–rock interaction and, to a more limited extent, by anthropogenic activities. The investigated karst waters could be exploited as drinking water resources in the study area. The results of the present study highlight the importance of karst waters in the context of good-quality water shortage but also the vulnerability of this resource to anthropogenic influences.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1026
Author(s):  
Alina Bărbulescu ◽  
Cristian Ștefan Dumitriu

Water is one of the natural resources most affected by anthropogenic activities, like industry, agriculture, and traffic [...]


2021 ◽  
Vol 13 (13) ◽  
pp. 7513
Author(s):  
Joshua Lozano ◽  
Joonghyeok Heo ◽  
Mijin Seo

The purpose of this study was to evaluate the public water contamination levels of Winkler County, in West Texas. With water scarcity becoming more prevalent in arid climates like West Texas, it is important to ensure the water quality in these areas. The Dockum and Pecos Valley aquifers were analyzed for inorganic pollutants that could inhibit the water. The parameters such as copper, lead, arsenic, nitrate, chloride, and chromium level reports were provided from 1972 to 2018 to analyze and compare to other studies such as the ones conducted in the Midland/Odessa area. The results were compared to the Environmental Protection Agency (EPA) safety standards, and conclusions were made for the safety consumption of water within the county. We found that inorganic pollutants resulted mainly from the mobilization of the contaminant from anthropogenic activities such as chemical fertilizers, oil and gas developments. This research provides important information for inorganic pollutants in the sinkhole region of Winkler County and contributes to understanding the response to the aquifers. The significance of water quality in West Texas is now more important than ever to ensure that everyone has clean drinking water.


Chemosphere ◽  
2021 ◽  
Vol 279 ◽  
pp. 130496
Author(s):  
Neeraj Pant ◽  
Shive Prakash Rai ◽  
Rajesh Singh ◽  
Sudhir Kumar ◽  
Ravi K. Saini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document