scholarly journals The Laser Alloying Process of Ductile Cast Iron Surface with Titanium

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 282
Author(s):  
Aleksandra Kotarska

The article presents the results of the laser alloying process of ductile cast iron EN-GJS 350-22 surface with titanium. The laser alloying process was conducted on 2 kW high power diode laser (HPDDL) Rofin Sinar DL02 with rectangular focus and uniform power density distribution in the focus axis. The laser alloying was conducted with constant laser beam power and processing speed with titanium powder feed rate variation. The tests of the produced surface layers included macrostructure and microstructure observations, X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis, Vickers hardness, and solid particle erosion according to ASTM G76-04 standard. To assess the erosion mechanism, SEM observations of worn surfaces after erosive test were carried out. As a result of laser alloying of a ductile cast iron surface, the in situ metal-matrix composite structure was formed with TiC reinforcing particles. The microstructure change resulted in the increase of surface layers hardness and erosion resistance in comparison to the base material.

2020 ◽  
Vol 308 ◽  
pp. 76-99 ◽  
Author(s):  
Damian Janicki

This chapter presents a novel method for analysis and optimization of the in-situ formation of TiC-reinforced composite surface layers (TRL) on a ductile cast iron substrate during the laser surface alloying process, combining the experimental approach with the computational thermodynamics. The microstructure of the TRLs has been assessed by light optical microscopy, scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction. The results of thermodynamic calculations with the Scheil-Gulliver model showed a good agreement with the experimental results, indicating that the actual solidification path for the analyzed Fe-C-Si-Ti alloy systems under the investigated range of laser processing conditions is close to the Scheil-Gulliver assumption.


2020 ◽  
Vol 856 ◽  
pp. 92-98
Author(s):  
Janthira Chantarach ◽  
Rungsinee Canyook

The purpose of the study was to inspect microstructure, mechanical properties and impact toughness of ductile cast iron grade FCD450 produced by austempering process. The study focused on austempering parameter, which effected impact toughness of material at low temperature. The FCD450 was initially temperature austenized at 885°C (1625˚F) for 2 hours. Austempering was carried out at three different temperatures of 271°C (520˚F), 313°C (560˚F) and 357°C (675˚F). The austempering temperature were varied at 1.5, 2.5 and 3.5 hours. X-ray diffraction was showed that the austempered ductile cast iron (ADI) microstructure consists of austenite and ferrite. The results showed that when austempered at 357°C (675˚F) for 2.5 hours has highest hardness and impact energy at low temperature. The dimple ductile fracture of ADI fracture surfaces was revealed by scanning electron microscope (SEM).


2016 ◽  
Vol 879 ◽  
pp. 903-908 ◽  
Author(s):  
Nikolai Kashaev ◽  
Dmitry Pugachev ◽  
Stefan Riekehr ◽  
Volker Ventzke

The present work investigates the effects of laser beam power, focus position and advance speed on the geometry, microstructure and mechanical properties of fiber laser beam welded Ti-6Al-2Sn-4Zr-2Mo (denoted as Ti-6242) butt joints used for high temperature applications. Detailed microstructural and mechanical studies were performed on welds produced using optimized parameters (a laser beam power of 5 kW, a focus position of 0.0 mm and an advance speed of 6.2 m/min). The Ti-6242 base material is characterized by a globular (α+β) microstructure. The heat input during laser beam welding led to the formation of a martensitic α’-phase fusion zone. The heat affected zone consisted of globular grains and acicular crystallites. These local transformations were connected with a change in the micro-texture, average grain size and β-phase content. Furthermore, the microhardness increased from 330 HV 0.3 to 450 HV 0.3 due to the martensitic transformation. The mechanical behavior of the laser beam welded Ti-6242 butt joint loaded in tension was determined by the properties of the Ti-6242 base material. The local increase in hardness provided a shielding effect that protected the Ti-6242 butt joint against mechanical damage.


2001 ◽  
Vol 135 (2-3) ◽  
pp. 279-285 ◽  
Author(s):  
Bong-Yong Jeong ◽  
Min-Sun Hwang ◽  
Chongmu Lee ◽  
Myung-Ho Kim

2017 ◽  
Vol 62 (4) ◽  
pp. 2425-2431 ◽  
Author(s):  
D. Janicki

AbstractDiode laser surface alloying process was used to the in-situ synthesis of TiC-reinforced composite surface layers on the ductile cast iron substrate. The obtained composite surface layers were investigated using optical and scanning electron microscopy, and XRD diffraction.It was found that the morphology and fraction of TiC phase is directly dependent upon both the concentration of titanium in the molten pool and also the solidification rate. With increasing titanium content, the fraction of TiC increases, whereas the fraction of cementite decreases. The TiC phase promotes a heterogeneous nucleation of primary austenite grains, what reduces a tendency of cracking in the alloyed layers.


Sign in / Sign up

Export Citation Format

Share Document