scholarly journals Effect of Adding of Green Betel Leaf Extract and Honey on Mechanical Properties of Chitosan/PVA Hydrogel Wound Plaster

2021 ◽  
Vol 2110 (1) ◽  
pp. 012013
Author(s):  
N L F Chamidah ◽  
A B Rahanti ◽  
M D Kadasih ◽  
F D Sharfina ◽  
L Rohmawati

Abstract Wound plasters on the market still have drawbacks, including lack of elasticity and stinging. Thus, there is a need for new materials from nature to be used as the base material for wound plasters, namely betel leaf extract and honey composited with PVA/chitosan. This study purpose to find out mechanical properties of wound plaster of chitosan/PVA with the composition of betel leaf extract and honey. The first stage is making hydrogel by mixing PVA and chitosan, and the second stage is extracting green betel leaves and honey by the maceration method. Then the two stages were mixed with a composition of 5wt%, 15wt%, and 25wt% green betel leaf extract. The results were tested for tensile strength to determine the elasticity properties of the wound plaster. In this study, the 25wt% betel leaf extract concentration had the best tensile strength value of 0.219 MPa, and the modulus of elasticity was 0.11 MPa.

Author(s):  
Martin Hukle ◽  
Brian Newbury ◽  
Dan Lillig ◽  
Jonathan Regina ◽  
Agnes Marie Horn

The intelligent design of a given pipeline system intended for operation beyond the elastic limit should incorporate specific features into both the base material (line pipe) and girth weld that enable the affected system to deform safely into the plastic regime within the intended strain demand limits. The current paper focuses on the mechanical properties known to influence the strain capacity of the base material (i.e., line pipe steel independent of the girth weld). Line pipe mechanical properties of interest include: longitudinal yield strength, tensile strength, yield to tensile strength ratio, reduction of area, elongation and uniform elongation. Of particular interest (in consideration of the conventional thermally applied corrosion protection coating systems to be employed), are the longitudinal mechanical properties in the “aged” condition. The present study investigates six (6) different pipeline steels encompassing grades X60 (415 MPa) to X100 (690 MPa), and includes both UOE Submerged Arc Welded - Longitudinal (SAW-L) and seamless (SMLS) forming methods.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1536
Author(s):  
Jaewoong Kim ◽  
Jisun Kim ◽  
Changmin Pyo

As the environmental regulations on ship emissions by the International Maritime Organization (IMO) become stricter, the demand for a ship powered by liquefied natural gas (LNG) is rapidly increasing worldwide. Compared to other materials, high-manganese steel has the advantages of superior impact toughness at cryogenic temperatures, a low thermal expansion coefficient, and a low-cost base material and welding rod. However, there is a limitation that the mechanical properties of a filler material are worse than those of a base material that has excellent mechanical properties. To solve these shortcomings, a basic study was performed to apply fiber laser welding with little welding deformation and no filler material to high-manganese steel. The relationship between laser welding parameters and penetration shapes was confirmed through cross-section observation and analysis by performing a bead on plate (BOP) test by changing laser power and welding speed, which are the main parameters of laser welding. In addition, the welding performance was evaluated through mechanical property tests (yield strength, tensile strength, hardness, cryogenic impact strength) of a welding part after performing the high-manganese steel laser butt welding experiment. As a result, it was confirmed that the yield strength of a high-manganese steel laser welding part was 97.5% of that of a base metal, and its tensile strength was 93.5% of that of a base metal.


2013 ◽  
Vol 811 ◽  
pp. 146-151
Author(s):  
Chen Wei Chen ◽  
Fu Xin Yang ◽  
Li Xin Lu ◽  
Jin Xie ◽  
Li Li

The Flexible Intermediate Bulk Container (FIBC) is a flexible transportation packaging container that is weaved by polyolefin plastic ribbon-like filament, which is widely used in the storage and transportation of granular and powder materials. When the FIBC was affected by environment factors synthetically under using, such as light, heat and air etc, it would come into degradation and its mechanical properties reduced. In this study, the basic mechanical properties of polypropylene FIBC base material were tested by tensile experiment and the reason of main base material mechanical properties difference between theoretical value and experimental value was analyzed. Based on the FIBC different using environments, the natural exposure experiment and high/low temperature experiments were carried out, we took tensile strength holding ratio and elongation holding ratio as evaluating indicator and analyzed law of influence of the different experiment condition on base material mechanical properties, which provided valuable reference for FIBC designing and manufacturing. Along with the experiment time increased, the color of base material changed from milk white to yellow slowly, the tensile strength and elongation reduced, the influencing grade was as follow: natural exposure>high temperature>low temperature. The results of natural exposure experiment showed that there was difference of anti-aging performance among the FIBC base material, the mechanical properties of woof fabric and belt reduced evidently, while others reduced slowly. For high (45°C)/low (-25°C) temperature experiments, the reduction of FIBC base materials mechanical properties were not obvious and woof fabric reduced a little faster comparatively.


2016 ◽  
Vol 49 (6) ◽  
pp. 498-512 ◽  
Author(s):  
Ali Doniavi ◽  
Saeedeh Babazadeh ◽  
Taher Azdast ◽  
Rezgar Hasanzadeh

Although considerable progress has been made in recent years in field of polymer welding, challenges still remain in using a friction stir welding method to join polycarbonate (PC) composites. This research provides an investigation on the effect of welding parameters (tool’s travel and rotational speeds) on mechanical properties of PC nanocomposite weld lines. PC nanocomposites were prepared with different percentages of Al2O3 nanofiller using a twin screw extruder and injection moulded as sheets in order to ease the welding. Considering various parameters and their levels, optimization of Taguchi experimental design was carried out, an L16 orthogonal standard array was selected and the effective parameter was calculated using analysis of variance of the results. The results indicated that nanoalumina percentage is the most effective parameter on the tensile strength of weld and tool’s travel speed and rotational speed are next effective parameters, respectively. According to signal-to-noise ratio, maximum weld tensile strength (89.5% of base material) is revealed when nanoalumina percentage, tool’s travel speed and tool’s rotational speed were chosen as 1 wt%, 12 mm/min and 1250 r/min, respectively.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1185
Author(s):  
Zhimin Wang ◽  
Lulu Sun ◽  
Wenchao Ke ◽  
Zhi Zeng ◽  
Wei Yao ◽  
...  

The joining of high-temperature titanium alloy is attracting much attention in aerospace applications. However, the defects are easily formed during laser welding of titanium alloys, which weakens the joint mechanical properties. In this work, laser oscillating welding was applied to join TC31 high-temperature titanium alloy. The weld appearance, microstructure and mechanical properties of the laser welds were investigated. The results show that sound joints were formed by using laser oscillating welding method, and a large amount of martensite was presented in the welds. High mechanical properties were achieved, which was approaching to (or even equaled) the strength of the base material. The joints exhibited a tensile strength of up to 1200 ± 10 MPa at room temperature and 638 ± 6 MPa at 923 K. Laser oscillating welding is beneficial to the repression of porosity for welding high-temperature titanium alloy.


Author(s):  
Paweł SKOCZYLAS ◽  
Zbigniew GULBINOWICZ ◽  
Olgierd GOROCH ◽  
Katarzyna BARCZ ◽  
Mieczysław KACZOROWSKI

The subject of the work discussed herein and carried out as a part of the Polish National Centre of Research and Development project titled ”Development and implementation of critical technology demonstrators for the new generation of 120 mm tank artillery ammunition” are the results of a research into the influence of LPS (Liquid Phase Sintering) parameters and heat treatment on the mechanical properties of W91Ni6Co3 and W91Ni6Co2.25Fe0.75 alloys, designated PR200 and PR201, respectively. The alloys, as LPS-processed and heat treated, were tested on a strength testing machine to determine their tensile strength (Rm), proof stress (Rp0.2) and elongation (A5). The analysis of the test results resulted in a proposal of manufacturing process parameters to have the alloys tested develop specified mechanical properties. It was found the ternary alloy with chemical composition W91Ni6Co3 and designated PR200 was more promising in the feasibility of producing specified mechanical properties. The alloy, once sintered and heat treated in two stages, could facilitate production of a material with a tensile strength Rm>1400 MPa, a yield strength Rp0.2 > 1350 MPa, a minimum elongation of 11%, and an impact strength > 115 J/cm2.


2017 ◽  
Author(s):  
Arham Rusli

Appropriate concentration of base material and plasticizer is required to obtain good physical and mechanical properties of edible film for food packaging and preservation functions. The aim of this study was to obtain the best combination of the base material and plasticizer in the manufacture of agar films based on physical and mechanical properties. Results showed that the physical and mechanical properties of the agar edible film were affected by the agar and glycerol concentrations. Increasing agar concentrations resulted in the increase in the film thickness, tensile strength (TS), and elongation at break (EAB), but decreased the filmsolubility. While increasing glycerol concentration tended to increase the film thickness and solubility, but decrease the TS of the film. The best concentration combination of agar and glycerol in this study was 3 and 10%, respectively.


2014 ◽  
Vol 788 ◽  
pp. 243-248 ◽  
Author(s):  
Bao Kang Gu ◽  
Da Tong Zhang

In this study, 5083 aluminum alloy plates with a thickness of 3mm are friction stir welded and the microstructure and mechanical properties of the joints were characterized. In particular, tensile behavior of the joints is examined at 77K. It is found that defect-free joints can be obtained under a tool rotational rate of 800rpm and a welding speed of 60mm/min. The friction stirring welds exhibit finer microstructure and higher hardness than that of the base material due to the grain refinement. The ultimate tensile strength (UTS) and elongation of the joints measured at 298K are 316MPa and 21.3%, which are nearly equal to those of the base material. With the tensile test temperature decreasing to 77K, UTS and elongation of both the base material and joints increase. Comparing with tensile testing at 298K, dimples on the fracture surface of the samples tested at 77K are more uniform in distribution. The improvement of the mechanical properties of specimens at low temperature is related to the inactivation of planar slip and the strengthening of strain hardening.


2020 ◽  
Vol 321 ◽  
pp. 11046
Author(s):  
Xu Enen ◽  
Tian Yanwen ◽  
Hao Fang ◽  
Cu Linin ◽  
Du Yuxuan ◽  
...  

In this paper, the microstructure evolution and mechanical properties fluctuation of Ti-6Al-2Zr-1Mo-1V forging state bar after the first stage heat treatment at 950℃~955℃ and the second stage heat treatment at 760℃~840℃ were studied. In the first stage of heat treatment, the content of primary α and the tensile strength decreases with the increase of temperature, and the high temperature duration time is obviously prolonged. During the second stage of heat treatment, the metastable β phase precipitates third α phase, and with the increase of temperature, the tensile strength increases and the high temperature duration time prolongs.


2021 ◽  
pp. 002199832110115
Author(s):  
Naseem Ahamad ◽  
Aas Mohammad ◽  
Moti Lal Rinawa ◽  
Kishor Kumar Sadasivuni ◽  
Pallav Gupta

The aim of the present paper is to examine the outcome of Al2O3-SiC reinforcements on structural and mechanical behavior of Al matrix based hybrid composites. Al-Al2O3-SiC hybrid composite has been developed through stir casting with addition of ceramics i.e. Al2O3-SiC (2.5 wt.%, 5.0 wt.%, 7.5 wt.% and 10.0 wt.%) in relative and symmetrical proportion. The structural characteristics, i.e. phase, microstructure, EDS; physical property i.e. density and the mechanical properties, i.e. hardness, impact strength and tensile strength of fabricated specimens have been investigated. XRD represents the transitional phase formation among Al base material and Al2O3-SiC ceramic phases with inter-atomic bonding between them. SEM reveals that the Al2O3-SiC fragments has distributed symmetrically in Al matrix. EDS spectrum of various samples are in confirmation with the XRD results. Density of hybrid composite reduces with increase in weight percentage of ceramic reinforcements i.e. Al2O3-SiC because ceramic particle gains low density after preheating. Hardness of hybrid composites increases upto 5 wt.% variation of ceramic reinforcements i.e. Al2O3-SiC after that it decreases. Impact strength of hybrid composite has been increased with an increase in weight percentage of ceramic. Al-2.5 wt.% Al2O3-2.5 wt.% SiC shows maximum ultimate tensile strength. It is expected that the prepared hybrid composites will be useful for fastener studs.


Sign in / Sign up

Export Citation Format

Share Document