scholarly journals Refractory black carbon (rBC) variability in a 47-year West Antarctic snow and firn core

2020 ◽  
Vol 14 (5) ◽  
pp. 1537-1554 ◽  
Author(s):  
Luciano Marquetto ◽  
Susan Kaspari ◽  
Jefferson Cardia Simões

Abstract. Black carbon (BC) is an important climate-forcing agent that affects snow albedo. In this work, we present a record of refractory black carbon (rBC) variability, measured from a 20 m deep snow and firn core drilled in West Antarctica (79∘55′34.6′′ S, 94∘21′13.3′′ W, 2122 m above sea level) during the 2014–2015 austral summer. This is the highest elevation rBC record from West Antarctica. The core was analyzed using the Single Particle Soot Photometer (SP2) coupled to a CETAC Marin-5 nebulizer. Results show a well-defined seasonality with geometric mean concentrations of 0.015 µg L−1 for the wet season (austral summer–fall) and 0.057 µg L−1 for the dry season (austral winter–spring). The core was dated to 47 years (1968–2015) using rBC seasonality as the main parameter, along with sodium (Na), sulfur (S) and strontium (Sr) variations. The annual rBC concentration geometric mean was 0.03 µg L−1, the lowest of all rBC cores in Antarctica referenced in this work, while the annual rBC flux was 6.25 µg m−2 a−1, the lowest flux in West Antarctica rBC records. No long-term trend was observed. Snow albedo reductions at the site due to BC were simulated using SNICAR online and found to be insignificant (−0.48 %) compared to clean snow. Fire spot inventory and BC emission estimates from the Southern Hemisphere suggest Australia and Southern Hemisphere South America as the most probable emission sources of BC to the drilling site, whereas HYSPLIT model particle transport simulations from 1968 to 2015 support Australia and New Zealand as rBC sources, with limited contributions from South America. Spectral analysis (REDFIT method) of the BC record showed cycles related to the Antarctic Oscillation (AAO) and to El Niño–Southern Oscillation (ENSO), but cycles in common with the Amundsen Sea Low (ASL) were not detected. Correlation of rBC records in Antarctica with snow accumulation, elevation and distance to the sea suggests rBC transport to East Antarctica is different from transport to West Antarctica.

2019 ◽  
Author(s):  
Luciano Marquetto ◽  
Susan Kaspari ◽  
Jefferson Cardia Simões

Abstract. Black carbon (BC) is an important climate-forcing agent that affects snow albedo. In this work, we present a record of refractory black carbon (rBC) variability, measured from a 20-meter deep snow and firn core drilled in West Antarctica (79°55'34.6"S, 94°21'13.3"W) during the 2014–2015 austral summer. The core was analyzed using a Single Particle Soot Photometer (SP2) coupled to a CETAC Marin-5 nebulizer. Results show a well-defined seasonality with geometric mean concentrations of 0.015 µg L−1 for the wet season (summer/fall) and 0.057 µg L−1 for the dry season (winter/spring). The core was dated to 47 years (1968–2015) using rBC seasonality as the main parameter, along with Na, S and Sr variations. The annual rBC concentration geometric mean was 0.03 µg L−1, the lowest of all rBC cores in Antarctica referenced in this work, while the annual rBC flux was 6.25 µg m−2 a−1, the lowest flux in West Antarctica records so far. No long-term trend was observed. Snow albedo changes in the site due to BC were simulated using SNICAR-online and found to be very low comparing to clean snow (−0.48 %). Fire spots inventory and BC emission estimates from the Southern Hemisphere suggest Australia and Southern Hemisphere South America as the most probable emission sources of BC to the drilling site. Spectral analysis (REDFIT method) of the BC record showed cycles related to the Antarctic Oscillation (AAO) but not to El Niño Southern Oscillation ENSO, and comparison with time series of co-registered Na record suggest BC transport to the site not to be related to the intrusion of marine air masses.


2019 ◽  
Vol 15 (2) ◽  
pp. 751-779 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved chronology and snow accumulation history for the Roosevelt Island Climate Evolution (RICE) ice core, Ross Ice Shelf, West Antarctica. The core adds information on past accumulation changes in an otherwise poorly constrained sector of Antarctica. The timescale was constructed by identifying annual cycles in high-resolution impurity records, and it constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). Validation by volcanic and methane matching to the WD2014 chronology from the WAIS Divide ice core shows that the two timescales are in excellent agreement. In a companion paper, gas matching to WAIS Divide is used to extend the timescale for the deeper part of the core in which annual layers cannot be identified. Based on the annually resolved timescale, we produced a record of past snow accumulation at Roosevelt Island. The accumulation history shows that Roosevelt Island experienced slightly increasing accumulation rates between 700 BCE and 1300 CE, with an average accumulation of 0.25±0.02 m water equivalent (w.e.) per year. Since 1300 CE, trends in the accumulation rate have been consistently negative, with an acceleration in the rate of decline after the mid-17th century. The current accumulation rate at Roosevelt Island is 0.210±0.002 m w.e. yr−1 (average since 1965 CE, ±2σ), and it is rapidly declining with a trend corresponding to 0.8 mm yr−2. The decline observed since the mid-1960s is 8 times faster than the long-term decreasing trend taking place over the previous centuries, with decadal mean accumulation rates consistently being below average. Previous research has shown a strong link between Roosevelt Island accumulation rates and the location and intensity of the Amundsen Sea Low, which has a significant impact on regional sea-ice extent. The decrease in accumulation rates at Roosevelt Island may therefore be explained in terms of a recent strengthening of the ASL and the expansion of sea ice in the eastern Ross Sea. The start of the rapid decrease in RICE accumulation rates observed in 1965 CE may thus mark the onset of significant increases in regional sea-ice extent.


2020 ◽  
Author(s):  
Iracema Cavalcanti ◽  
Naurinete Barreto

<p>The main atmospheric teleconnection patterns in the Southern Hemisphere are the Southern Annular Mode (SAM) and the Pacific South American (PSA). The SAM has opposite atmospheric anomalies between high and middle latitudes and it is linked with the polar vortex intensity and jet streams. PSA shows a wavetrain pattern from tropical to the extratropical atmosphere over the South Pacific Ocean triggered by convection in the tropical Indian, Maritime Continent and tropical Pacific. These modes modulate the atmospheric circulation variability and have an influence on the precipitation over Southern Hemisphere continents, mainly in South America (SA). Global models are able to represent these modes in climate simulations of seasonal timescale. The objective of this study is to analyse these teleconnections in hindcasts of subseasonal timescale and the relations to precipitation anomalies over South America. Predictions in the subseasonal time scale of austral summer are very important for several sectors of Southeastern and Southern regions of SA, as these are very populated regions and have agriculture and the largest hydropower,  which are very much affected by precipitation extremes, both excess and lack of rain. Two models of the S2S project (ECMWF and NCEP) are used for the summer seasons of 1999 to 2011 and the patterns are compared to ERA5 reanalyses and GPCP data. EOF analyses of geopotential at 200 hPa and regression analyses against precipitation show the patterns and the influences over South America. The SAM pattern is represented in predictions of 1 to 4 weeks in advance, and PSA pattern, from 1 to 3 weeks in advance. Then, the atmospheric circulation and meteorological variables composites of extreme positive and negative amplitudes of SAM and PSA are analysed to interpret precipitation anomalies during these specific periods for predictions of weeks 2 and 3.</p>


2014 ◽  
Vol 27 (21) ◽  
pp. 8070-8093 ◽  
Author(s):  
Julien P. Nicolas ◽  
David H. Bromwich

Abstract A reconstruction of Antarctic monthly mean near-surface temperatures spanning 1958–2012 is presented. Its primary goal is to take advantage of a recently revised key temperature record from West Antarctica (Byrd) to shed further light on multidecadal temperature changes in this region. The spatial interpolation relies on a kriging technique aided by spatiotemporal temperature covariances derived from three global reanalyses [the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim), Modern-Era Retrospective Analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR)]. For 1958–2012, the reconstruction yields statistically significant annual warming in the Antarctic Peninsula and virtually all of West Antarctica, but no significant temperature change in East Antarctica. Importantly, the warming is of comparable magnitude both in central West Antarctica and in most of the peninsula, rather than concentrated either in one or the other region as previous reconstructions have suggested. The Transantarctic Mountains act for the temperature trends, as a clear dividing line between East and West Antarctica, reflecting the topographic constraint on warm air advection from the Amundsen Sea basin. The reconstruction also serves to highlight spurious changes in the 1979–2009 time series of the three reanalyses that reduces the reliability of their trends, illustrating a long-standing issue in high southern latitudes. The study concludes with an examination of the influence of the southern annular mode (SAM) on Antarctic temperature trends. The results herein suggest that the trend of the SAM toward its positive phase in austral summer and fall since the 1950s has had a statistically significant cooling effect not only in East Antarctica (as already well documented) and but also (only in fall) in West Antarctica.


2015 ◽  
Vol 11 (3) ◽  
pp. 2159-2180 ◽  
Author(s):  
C. Turney ◽  
R. Jones ◽  
C. Fogwill ◽  
J. Hatton ◽  
A. N. Williams ◽  
...  

Abstract. Southern Hemisphere westerly airflow has a significant influence on the ocean–atmosphere system of the mid- to high-latitudes with potentially global climate implications. Unfortunately historic observations only extend back to the late nineteenth century, limiting our understanding of multi-decadal to centennial change. Here we present a highly resolved (30 yr) record of past westerly air strength from a Falkland Islands peat sequence spanning the last 2600 years. Situated under the core latitude of Southern Hemisphere westerly airflow, we identify highly variable changes in exotic pollen derived from South America which can be used to inform on past westerly air strength and location. The results indicate enhanced airflow over the Falklands between 2000 and 1000 cal. yr BP, and associated with increased burning, most probably as a result of higher temperatures and/or reduced precipitation, comparable to records in South America. Spectral analysis of the charcoal record identifies a 250 year periodicity within the data, suggesting solar variability has a modulating influence on Southern Hemisphere westerly airflow with potentially important implications for understanding global climate change through the late Holocene.


Polar Biology ◽  
2013 ◽  
Vol 36 (8) ◽  
pp. 1215-1230 ◽  
Author(s):  
Doo Byoul Lee ◽  
Keun Hyung Choi ◽  
Ho Kyung Ha ◽  
Eun Jin Yang ◽  
Sang Heon Lee ◽  
...  

2019 ◽  
Vol 11 (6) ◽  
pp. 653 ◽  
Author(s):  
Chunchun Gao ◽  
Yang Lu ◽  
Zizhan Zhang ◽  
Hongling Shi

Many recent mass balance estimates using the Gravity Recovery and Climate Experiment (GRACE) and satellite altimetry (including two kinds of sensors of radar and laser) show that the ice mass of the Antarctic ice sheet (AIS) is in overall decline. However, there are still large differences among previously published estimates of the total mass change, even in the same observed periods. The considerable error sources mainly arise from the forward models (e.g., glacial isostatic adjustment [GIA] and firn compaction) that may be uncertain but indispensable to simulate some processes not directly measured or obtained by these observations. To minimize the use of these forward models, we estimate the mass change of ice sheet and present-day GIA using multi-geodetic observations, including GRACE and Ice, Cloud and land Elevation Satellite (ICESat), as well as Global Positioning System (GPS), by an improved method of joint inversion estimate (JIE), which enables us to solve simultaneously for the Antarctic GIA and ice mass trends. The GIA uplift rates generated from our JIE method show a good agreement with the elastic-corrected GPS uplift rates, and the total GIA-induced mass change estimate for the AIS is 54 ± 27 Gt/yr, which is in line with many recent GPS calibrated GIA estimates. Our GIA result displays the presence of significant uplift rates in the Amundsen Sea Embayment of West Antarctica, where strong uplift has been observed by GPS. Over the period February 2003 to October 2009, the entire AIS changed in mass by −84 ± 31 Gt/yr (West Antarctica: −69 ± 24, East Antarctica: 12 ± 16 and the Antarctic Peninsula: −27 ± 8), greater than the GRACE-only estimates obtained from three Mascon solutions (CSR: −50 ± 30, JPL: −71 ± 30, and GSFC: −51 ± 33 Gt/yr) for the same period. This may imply that single GRACE data tend to underestimate ice mass loss due to the signal leakage and attenuation errors of ice discharge are often worse than that of surface mass balance over the AIS.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 217
Author(s):  
Jiangping Zhu ◽  
Aihong Xie ◽  
Xiang Qin ◽  
Yetang Wang ◽  
Bing Xu ◽  
...  

The European Center for Medium-Range Weather Forecasts (ECMWF) released its latest reanalysis dataset named ERA5 in 2017. To assess the performance of ERA5 in Antarctica, we compare the near-surface temperature data from ERA5 and ERA-Interim with the measured data from 41 weather stations. ERA5 has a strong linear relationship with monthly observations, and the statistical significant correlation coefficients (p < 0.05) are higher than 0.95 at all stations selected. The performance of ERA5 shows regional differences, and the correlations are high in West Antarctica and low in East Antarctica. Compared with ERA5, ERA-Interim has a slightly higher linear relationship with observations in the Antarctic Peninsula. ERA5 agrees well with the temperature observations in austral spring, with significant correlation coefficients higher than 0.90 and bias lower than 0.70 °C. The temperature trend from ERA5 is consistent with that from observations, in which a cooling trend dominates East Antarctica and West Antarctica, while a warming trend exists in the Antarctic Peninsula except during austral summer. Generally, ERA5 can effectively represent the temperature changes in Antarctica and its three subregions. Although ERA5 has bias, ERA5 can play an important role as a powerful tool to explore the climate change in Antarctica with sparse in situ observations.


2021 ◽  
pp. 118564
Author(s):  
Roseline C. Thakur ◽  
B.S. Arun ◽  
Mukunda M. Gogoi ◽  
Meloth Thamban ◽  
Renoj J. Thayyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document