fast perfusion
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Tsai-Shun Lin ◽  
Seiji Kojima ◽  
Hajime Fukuoka ◽  
Akihiko Ishijima ◽  
Michio Homma ◽  
...  

Bacterial flagellar motor (BFM) is a large membrane-spanning molecular rotary machine for swimming motility. Torque is generated by the interaction between the rotor and multiple stator units powered by ion-motive force (IMF). The number of bound stator units is dynamically changed in response to the external load and the IMF. However, the detailed dynamics of stator unit exchange process remains unclear. Here, we directly measured the speed changes of sodium-driven chimeric BFMs under fast perfusion of different sodium concentration conditions using computer-controlled, high-throughput microfluidic devices. We found the sodium-driven chimeric BFMs maintained constant speed over a wide range of sodium concentrations by adjusting stator units in compensation to the sodium-motive force (SMF) changes. The BFM has the maximum number of stator units and is most stable at 5 mM sodium concentration rather than higher sodium concentration. Upon rapid exchange from high to low sodium concentration, the number of functional stator units shows a rapidly excessive reduction and then resurrection that is different from predictions of simple absorption model. This may imply the existence of a metastable hidden state of the stator unit during the sudden loss of sodium ions.


2020 ◽  
Vol 91 (5) ◽  
pp. 526-532 ◽  
Author(s):  
Hakan Cetin ◽  
Richard Webster ◽  
Wei Wei Liu ◽  
Akiko Nagaishi ◽  
Inga Koneczny ◽  
...  

ObjectiveDirect inhibition of acetylcholine receptor (AChR) function by autoantibodies (Abs) is considered a rare pathogenic mechanism in myasthenia gravis (MG), but is usually studied on AChRs expressed in cell lines, rather than tightly clustered by the intracellular scaffolding protein, rapsyn, as at the intact neuromuscular junction. We hypothesised that clustered AChRs would provide a better target for investigating the functional effects of AChR-Abs.MethodsAcetylcholine-induced currents were measured using whole-cell patch clamping and a fast perfusion system to assess fast (<2 min) functional effects of the serum samples. The sensitivity, specificity and rapidity of the system were first demonstrated by applying maternal AChR-Ab positive plasmas known to inhibit fetal AChR function in TE671 cells. Eleven previously untested AChR-Ab positive MG sera, 10 AChR-Ab negative MG sera and 5 healthy control sera were then applied to unclustered and rapsyn-clustered human adult AChRs in CN21 cells.ResultsThe maternal AChR-Ab positive plasmas reduced fetal AChR currents, but not adult AChR currents, by >80% within 100 s. Only 2/11 AChR-Ab positive sera inhibited AChR currents in unclustered AChRs, but 6/11 AChR-Ab positive sera compared with none of the 10 AChR-Ab negative sera (p=0.0020) inhibited rapsyn-clustered AChR currents, and current inhibition by the AChR-Ab positive sera was greater when the AChRs were clustered (p=0.0385). None of the sera had detectable effects on desensitisation or recovery from desensitisation.ConclusionThese results show that antibodies can inhibit AChR function rapidly and demonstrate the importance of clustering in exploring pathogenic disease mechanisms of MG Abs.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Matthew L Rook ◽  
Abby Williamson ◽  
John D Lueck ◽  
Maria Musgaard ◽  
David M Maclean

Acid-sensing ion channels (ASICs) are neuronal sodium-selective channels activated by reductions in extracellular pH. Structures of the three presumptive functional states, high-pH resting, low-pH desensitized, and toxin-stabilized open, have all been solved for chicken ASIC1. These structures, along with prior functional data, suggest that the isomerization or flipping of the β11–12 linker in the extracellular, ligand-binding domain is an integral component of the desensitization process. To test this, we combined fast perfusion electrophysiology, molecular dynamics simulations and state-dependent non-canonical amino acid cross-linking. We find that both desensitization and recovery can be accelerated by orders of magnitude by mutating resides in this linker or the surrounding region. Furthermore, desensitization can be suppressed by trapping the linker in the resting state, indicating that isomerization of the β11–12 linker is not merely a consequence of, but a necessity for the desensitization process in ASICs.


2019 ◽  
Author(s):  
Matthew Rook ◽  
Abby Williamson ◽  
John D. Lueck ◽  
Maria Musgaard ◽  
David M. MacLean

AbstractAcid-sensing ion channels (ASICs) are neuronal sodium-selective channels activated by reductions in extracellular pH. Structures of the three presumptive functional states, high-pH resting, low-pH desensitized, and toxin-stabilized open, have all been solved for chicken ASIC1. These structures, along with prior functional data, suggest that the isomerization or flipping of the β11-12 linker in the extracellular, ligand-binding domain is an integral component of the desensitization process. To test this, we combined fast perfusion electrophysiology, molecular dynamics simulations and state-dependent non-canonical amino acid cross-linking. We find that both desensitization and recovery can be accelerated by orders of magnitude by mutating resides in this linker or the surrounding region. Furthermore, desensitization can be suppressed by trapping the linker in the resting state, indicating that isomerization of the β11-12 linker is not merely a consequence of, but a necessity for the desensitization process in ASICs.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Francesco Prada ◽  
Luca Mattei ◽  
Massimiliano Del Bene ◽  
Luca Aiani ◽  
Marco Saini ◽  
...  

Background. Contrast enhanced ultrasound (CEUS) is a dynamic and continuous modality providing real-time view of vascularization and flow distribution patterns of different organs and tumors. Nevertheless its intraoperative use for brain tumors visualization has been performed few times, and a thorough characterization of cerebral glioma had never been performed before.Aim. To perform the first characterization of cerebral glioma using CEUS and to possibly achieve an intraoperative differentiation of different gliomas.Methods. We performed CEUS in an off-label setting in 69 patients undergoing surgery for cerebral glioma. An intraoperative qualitative analysis was performed comparing iCEUS with B-mode imaging. A postprocedural semiquantitative analysis was then performed for each case, according to EFSUMB criteria. Results were related to histopathology.Results. We observed different CE patterns: LGG show a mild, dotted CE with diffuse appearance and slower, delayed arterial and venous phase. HGG have a high CE with a more nodular, nonhomogeneous appearance and fast perfusion patterns.Conclusion. Our study characterizes for the first time human brain glioma with CEUS, providing further insight regarding these tumors’ biology. CEUS is a fast, safe, dynamic, real-time, and economic tool that might be helpful during surgery in differentiating malignant and benign gliomas and refining surgical strategy.


Radiology ◽  
2005 ◽  
Vol 236 (2) ◽  
pp. 694-703 ◽  
Author(s):  
Konstantin Nikolaou ◽  
Stefan O. Schoenberg ◽  
Ulrike Attenberger ◽  
Juergen Scheidler ◽  
Olaf Dietrich ◽  
...  

1994 ◽  
Vol 266 (4) ◽  
pp. C1013-C1027 ◽  
Author(s):  
S. J. Waisbren ◽  
J. Geibel ◽  
W. F. Boron ◽  
I. M. Modlin

We have extended to rabbit gastric glands the technique for perfusing single isolated renal tubules. We isolated glands by hand dissection and used concentric glass pipettes to hold them and perfuse their lumina. Parietal cells (PCs), which tended to be located toward the gland opening, were identified by their pyramidal shape, large size, and autofluorescence. Chief cells (CCs) were identified by their round shape and smaller size. In some experiments, we perfused the lumen with hydroxypyrenetrisulfonate, a pH-sensitive fluorophore, at pH 7.4 and used digital image processing to monitor luminal pH (pH1). Solutions were buffered with N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid to pH 7.4 at 37 degrees C. With fast perfusion, we found no evidence of decreased pH1, even with stimulation by 10 microM carbachol. With slow perfusion, pH1 often fell below the dye's sensitive range (pH < 5), especially at low perfusate buffering power. In other experiments, we loaded cells with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein and monitored intracellular pH (pHi) in multiple individual PCs and CCs in a single gland. Mean pHi was 7.21 +/- 0.02 (n = 136 cells) for PCs and 7.27 +/- 0.03 (n = 103) for CCs. To examine the response to decreased pH1 and basolateral pH (pHb), we lowered pHb to 6.4 or lowered pH1 to 3.4 or 1.4. Lowering pHb to 6.4 for approximately 1 min caused pHi to fall reversibly by 0.39 +/- 0.05 (n = 53) in PCs and 0.58 +/- 0.03 (n = 50) in CCs. Lowering pH1 to 3.4 or 1.4 caused no significant pHi changes in PCs (n = 38 and 82) or in CCs (n = 44 and 77). Carbachol did not affect the response to changes in pH1 or pHb. We conclude that the apical surfaces of PCs and CCs are unusually resistant to extreme pH gradients.


Sign in / Sign up

Export Citation Format

Share Document