scholarly journals Stator Dynamics Depending on Sodium Concentration in Sodium-Driven Bacterial Flagellar Motors

2021 ◽  
Vol 12 ◽  
Author(s):  
Tsai-Shun Lin ◽  
Seiji Kojima ◽  
Hajime Fukuoka ◽  
Akihiko Ishijima ◽  
Michio Homma ◽  
...  

Bacterial flagellar motor (BFM) is a large membrane-spanning molecular rotary machine for swimming motility. Torque is generated by the interaction between the rotor and multiple stator units powered by ion-motive force (IMF). The number of bound stator units is dynamically changed in response to the external load and the IMF. However, the detailed dynamics of stator unit exchange process remains unclear. Here, we directly measured the speed changes of sodium-driven chimeric BFMs under fast perfusion of different sodium concentration conditions using computer-controlled, high-throughput microfluidic devices. We found the sodium-driven chimeric BFMs maintained constant speed over a wide range of sodium concentrations by adjusting stator units in compensation to the sodium-motive force (SMF) changes. The BFM has the maximum number of stator units and is most stable at 5 mM sodium concentration rather than higher sodium concentration. Upon rapid exchange from high to low sodium concentration, the number of functional stator units shows a rapidly excessive reduction and then resurrection that is different from predictions of simple absorption model. This may imply the existence of a metastable hidden state of the stator unit during the sudden loss of sodium ions.

Microbiology ◽  
2010 ◽  
Vol 156 (5) ◽  
pp. 1275-1283 ◽  
Author(s):  
Kai M. Thormann ◽  
Anja Paulick

Many bacteria are motile by means of flagella, semi-rigid helical filaments rotated at the filament's base and energized by proton or sodium-ion gradients. Torque is created between the two major components of the flagellar motor: the rotating switch complex and the cell-wall-associated stators, which are arranged in a dynamic ring-like structure. Being motile provides a survival advantage to many bacteria, and thus the flagellar motor should work optimally under a wide range of environmental conditions. Recent studies have demonstrated that numerous species possess a single flagellar system but have two or more individual stator systems that contribute differentially to flagellar rotation. This review describes recent findings on rotor–stator interactions, on the role of different stators, and on how stator selection could be regulated. An emerging model suggests that bacterial flagellar motors are dynamic and can be tuned by stator swapping in response to different environmental conditions.


2004 ◽  
Vol 50 (5) ◽  
pp. 369-374 ◽  
Author(s):  
K Kita-Tsukamoto ◽  
M Wada ◽  
K Yao ◽  
T Nishino ◽  
K Kogure

Bacterial cells in aquatic environments are able to reach or stay near nutrient patches by using motility. Motility is usually attained by rotating flagellar motors that are energized by electrochemical potential of H+ or Na+. In this paper, the ion specificity for flagellar rotation of two marine isolates Halomonas spp. strains US172 and US201 was investigated. Both isolates require sodium for growth and possess a respiratory-driven primary sodium pump. They are motile because of lateral flagella regardless of the presence of sodium ions. Their swimming speed under various concentrations of sodium ions with and without carbonylcyanide m-chlorophenylhydrazone, a proton conductor, and with and without phenamil, a specific inhibitor for the sodium-driven flagellar motors, was examined. The effect of carbonylcyanide m-chlorophenylhydrazone on the transmembrane proton gradient was also determined. Our results showed that the flagellar motors of the Halomonas strains were energized by both H+ and Na+ in one cell. The bimodal nature of Halomonas spp. motility with respect to the driving energy source may reflect ecophysiological versatility to adapt to a wide range of salt conditions of the marine environment.Key words: marine bacteria, Halomonas, flagellar motor, sodium, proton.


2018 ◽  
Author(s):  
Mohammed Kaplan ◽  
Debnath Ghosal ◽  
Poorna Subramanian ◽  
Catherine M. Oikonomou ◽  
Andreas Kjær ◽  
...  

AbstractThe bacterial flagellar motor is a cell-envelope-embedded macromolecular machine that functions as a propeller to move the cell. Rather than being an invariant machine, the flagellar motor exhibits significant variability between species, allowing bacteria to adapt to, and thrive in, a wide range of environments. For instance, different torque-generating stator modules allow motors to operate in conditions with different pH and sodium concentrations and some motors are adapted to drive motility in high-viscosity environments. How such diversity evolved is unknown. Here we use electron cryo-tomography to determine thein situmacromolecular structures of the flagellar motors of three Gammaproteobacteria species:Legionella pneumophila,Pseudomonas aeruginosa, andShewanella oneidensisMR-1, providing the first views of intact motors with dual stator systems. Complementing our imaging with bioinformatics analysis, we find a correlation between the stator system of the motor and its structural complexity. Motors with a single H+-driven stator system have only the core P- and L-rings in their periplasm; those with dual H+-driven stator systems have an extra component elaborating their P-ring; and motors with Na+- (or dual Na+-H+)- driven stator systems have additional rings surrounding both their P- and L-rings. Our results suggest an evolution of structural complexity that may have enabled pathogenic bacteria likeL. pneumophilaandP. aeruginosato colonize higher-viscosity environments in animal hosts.


2020 ◽  
Author(s):  
V. Soman ◽  
S. Kumari ◽  
S. Nath ◽  
R. Elangovan

AbstractMany species of bacteria use flagella to navigate in its environment. The flagellum is a 7-10 μm long helical filament with a rotary motor at its base embedded in the cell membrane and almost a dozen stator complexes. Proton motive force across the cell membrane powers the flagellar motors of E.coli and Salmonella. The motor stochastically switches between clockwise and counter-clockwise direction. A chemotaxis system causes the motor to change its direction, but the process is more complex as the switch is sensitive to load and proton motive force as well. NaCl is significant with regard to the flagellar motor as it affects the stator dynamics, proton motive force, and osmotaxis at higher concentration. Chemotaxis helps the bacteria for its growth and survival. E.coli’s natural habitat has high osmolarity and the organism uses use various mechanisms for osmoregulation. However, the role of flagellar motor to adapt to the changes in osmolarity, or osmotaxis, is not well studied. In this work, we dissipated the membrane potential of bacteria in pH 7 using step-wise increase in concentration of NaCl in motility buffer and studied the output of E.coli’s flagellar motor using tethered bead assay and swimming Salmonella enteritidis cells. We observed decrease in motor speed and switching rates with stepwise increase in NaCl concentration in the motility buffer. The mean speed of the motors decreased with NaCl concentration. The population of swimming cells tumbled more with increase in concentration of NaCl. At the single motor level, the motors biased to CCW rotation with decrease in membrane potential. In this study, we present our observations of the flagellar motor in high NaCl concentration, and explore how NaCl can be used to study various aspects of the bacterial flagellar motor.Statement of significanceSodium ion has been significant in the both the cellular energetics and the function of bacterial flagellar motor. Growing evidence show that the effect of sodium ions was not what hitherto thought it would be. It is involved in the sodium energetics, dissipate membrane potential, affect the flagellar stator dynamics of bacteria. Being an osmolyte, it influences the osmotaxis of bacteria. In this work, we studied the effect of NaCl on the response of the single bacterial flagellar motor of E.coli and swimming cells of Salmonella enteritidis. We observed that the effect of NaCl on the output of the flagellar motor was significant and it may affect the cells in various ways.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Nicole J. Bale ◽  
Marton Palatinszky ◽  
W. Irene C. Rijpstra ◽  
Craig W. Herbold ◽  
Michael Wagner ◽  
...  

ABSTRACT “Candidatus Nitrosotenuis uzonensis” is the only cultured moderately thermophilic member of the thaumarchaeotal order Nitrosopumilales (NP) that contains many mesophilic marine strains. We examined its membrane lipid composition at different growth temperatures (37°C, 46°C, and 50°C). Its lipids were all membrane-spanning glycerol dialkyl glycerol tetraethers (GDGTs), with 0 to 4 cyclopentane moieties. Crenarchaeol (cren), the characteristic thaumarchaeotal GDGT, and its isomer (crenʹ) were present in high abundance (30 to 70%). The GDGT polar headgroups were mono-, di-, and trihexoses and hexose/phosphohexose. The ratio of glycolipid to phospholipid GDGTs was highest in the cultures grown at 50°C. With increasing growth temperatures, the relative contributions of cren and crenʹ increased, while those of GDGT-0 to GDGT-4 (including isomers) decreased. TEX86 (tetraether index of tetraethers consisting of 86 carbons)-derived temperatures were much lower than the actual growth temperatures, further demonstrating that TEX86 does not accurately reflect the membrane lipid adaptation of thermophilic Thaumarchaeota. As the temperature increased, specific GDGTs changed relative to their isomers, possibly representing temperature adaption-induced changes in cyclopentane ring stereochemistry. Comparison of a wide range of thaumarchaeotal core lipid compositions revealed that the “Ca. Nitrosotenuis uzonensis” cultures clustered separately from other members of the NP order and the Nitrososphaerales (NS) order. While phylogeny generally seems to have a strong influence on GDGT distribution, our analysis of “Ca. Nitrosotenuis uzonensis” demonstrates that its terrestrial, higher-temperature niche has led to a lipid composition that clearly differentiates it from other NP members and that this difference is mostly driven by its high crenʹ content. IMPORTANCE For Thaumarchaeota, the ratio of their glycerol dialkyl glycerol tetraether (GDGT) lipids depends on growth temperature, a premise that forms the basis of the widely applied TEX86 paleotemperature proxy. A thorough understanding of which GDGTs are produced by which Thaumarchaeota and what the effect of temperature is on their GDGT composition is essential for constraining the TEX86 proxy. “Ca. Nitrosotenuis uzonensis” is a moderately thermophilic thaumarchaeote enriched from a thermal spring, setting it apart in its environmental niche from the other marine mesophilic members of its order. Indeed, we found that the GDGT composition of “Ca. Nitrosotenuis uzonensis” cultures was distinct from those of other members of its order and was more similar to those of other thermophilic, terrestrial Thaumarchaeota. This suggests that while phylogeny has a strong influence on GDGT distribution, the environmental niche that a thaumarchaeote inhabits also shapes its GDGT composition.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1788
Author(s):  
Giulio Giovannetti ◽  
Alessandra Flori ◽  
Nicola Martini ◽  
Roberto Francischello ◽  
Giovanni Donato Aquaro ◽  
...  

Sodium (23Na) is the most abundant cation present in the human body and is involved in a large number of vital body functions. In the last few years, the interest in Sodium Magnetic Resonance Imaging (23Na MRI) has considerably increased for its relevance in physiological and physiopathological aspects. Indeed, sodium MRI offers the possibility to extend the anatomical imaging information by providing additional and complementary information on physiology and cellular metabolism with the heteronuclear Magnetic Resonance Spectroscopy (MRS). Constraints are the rapidly decaying of sodium signal, the sensitivity lack due to the low sodium concentration versus 1H-MRI induce scan times not clinically acceptable and it also constitutes a challenge for sodium MRI. With the available magnetic fields for clinical MRI scanners (1.5 T, 3 T, 7 T), and the hardware capabilities such as strong gradient strengths with high slew rates and new dedicated radiofrequency (RF) sodium coils, it is possible to reach reasonable measurement times (~10–15 min) with a resolution of a few millimeters, where it has already been applied in vivo in many human organs such as the brain, cartilage, kidneys, heart, as well as in muscle and the breast. In this work, we review the different geometries and setup of sodium coils described in the available literature for different in vivo applications in human organs with clinical MR scanners, by providing details of the design, modeling and construction of the coils.


2006 ◽  
Vol 17 (7) ◽  
pp. 3009-3020 ◽  
Author(s):  
Johan-Owen De Craene ◽  
Jeff Coleman ◽  
Paula Estrada de Martin ◽  
Marc Pypaert ◽  
Scott Anderson ◽  
...  

The endoplasmic reticulum (ER) contains both cisternal and reticular elements in one contiguous structure. We identified rtn1Δ in a systematic screen for yeast mutants with altered ER morphology. The ER in rtn1Δ cells is predominantly cisternal rather than reticular, yet the net surface area of ER is not significantly changed. Rtn1-green fluorescent protein (GFP) associates with the reticular ER at the cell cortex and with the tubules that connect the cortical ER to the nuclear envelope, but not with the nuclear envelope itself. Rtn1p overexpression also results in an altered ER structure. Rtn proteins are found on the ER in a wide range of eukaryotes and are defined by two membrane-spanning domains flanking a conserved hydrophilic loop. Our results suggest that Rtn proteins may direct the formation of reticulated ER. We independently identified Rtn1p in a proteomic screen for proteins associated with the exocyst vesicle tethering complex. The conserved hydophilic loop of Rtn1p binds to the exocyst subunit Sec6p. Overexpression of this loop results in a modest accumulation of secretory vesicles, suggesting impaired exocyst function. The interaction of Rtn1p with the exocyst at the bud tip may trigger the formation of a cortical ER network in yeast buds.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Mohammed Kaplan ◽  
Debnath Ghosal ◽  
Poorna Subramanian ◽  
Catherine M Oikonomou ◽  
Andreas Kjaer ◽  
...  

The bacterial flagellar motor, a cell-envelope-embedded macromolecular machine that functions as a cellular propeller, exhibits significant structural variability between species. Different torque-generating stator modules allow motors to operate in different pH, salt or viscosity levels. How such diversity evolved is unknown. Here, we use electron cryo-tomography to determine the in situ macromolecular structures of three Gammaproteobacteria motors: Legionella pneumophila, Pseudomonas aeruginosa, and Shewanella oneidensis, providing the first views of intact motors with dual stator systems. Complementing our imaging with bioinformatics analysis, we find a correlation between the motor’s stator system and its structural elaboration. Motors with a single H+-driven stator have only the core periplasmic P- and L-rings; those with dual H+-driven stators have an elaborated P-ring; and motors with Na+ or Na+/H+-driven stators have both their P- and L-rings embellished. Our results suggest an evolution of structural elaboration that may have enabled pathogenic bacteria to colonize higher-viscosity environments in animal hosts.


Author(s):  
Graeme Mullins

Multidrug Resistant Protein 1 (MRP1 or ABCC1) belongs to a subclass of ATP-binding cassette (ABC) transporters that export a wide range of metabolites and xenobiotics across the plasma membrane. Increased expression of MRP1 in cancer cells enhances efflux of many anti-cancer agents, giving rise to multidrug resistant tumours. The purpose of this study was to investigate the function of an aspartate (Asp) amino acid that is highly conserved in all MRP-related proteins by mutating it and determining the consequences of doing so. Asp430 lies at the interface of the cytoplasm and a transmembrane helix in the first membrane-spanning domain of MRP1. Previous studies have shown that when Asp430 is mutated, the protein becomes unstable and is degraded.Because this Asp430 is highly conserved in many MRP-related ABC transporters and because structural homology models of human MRP1 predict that Asp430 is in close proximity to Arg433, we hypothesized that a salt bridge between these two a mino acids could be essential for proper folding and stability of the protein during its biosynthesis. Using site -directed mutagenesis, these two amino acids were interchanged to probe the existence of such an interaction. Thus a double mutant where Asp430 was mutated to Arg, and Arg433 was mutated to Asp was created, and the resultant mutant protein (D430R/R433D) was tested for its ability to be detected in mammalian cells by gel electrophoresis and immunoblotting. Our results show differences between the migration patterns of double and single mutants that are compatible with differences in the glycosylation levels of MRP1. However the fact that D430R and the R433D mutants don’t share the same migration pattern, together with the variation in migration bet ween D430 wild type and Supported by CIHR MOP-10519the double mutant D430R/R433D indicate that the possibility of a salt bridge can be discarded.Supported by CIHR MOP-10519


2021 ◽  
Vol 118 (46) ◽  
pp. e2115113118
Author(s):  
Ved P. Tiwari ◽  
Yuki Toyama ◽  
Debajyoti De ◽  
Lewis E. Kay ◽  
Pramodh Vallurupalli

Conformational dynamics play critical roles in protein folding, misfolding, function, misfunction, and aggregation. While detecting and studying the different conformational states populated by protein molecules on their free energy surfaces (FESs) remain a challenge, NMR spectroscopy has emerged as an invaluable experimental tool to explore the FES of a protein, as conformational dynamics can be probed at atomic resolution over a wide range of timescales. Here, we use chemical exchange saturation transfer (CEST) to detect “invisible” minor states on the energy landscape of the A39G mutant FF domain that exhibited “two-state” folding kinetics in traditional experiments. Although CEST has mostly been limited to studies of processes with rates between ∼5 to 300 s−1 involving sparse states with populations as low as ∼1%, we show that the line broadening that is often associated with minor state dips in CEST profiles can be exploited to inform on additional conformers, with lifetimes an order of magnitude shorter and populations close to 10-fold smaller than what typically is characterized. Our analysis of CEST profiles that exploits the minor state linewidths of the 71-residue A39G FF domain establishes a folding mechanism that can be described in terms of a four-state exchange process between interconverting states spanning over two orders of magnitude in timescale from ∼100 to ∼15,000 μs. A similar folding scheme is established for the wild-type domain as well. The study shows that the folding of this small domain proceeds through a pair of sparse, partially structured intermediates via two discrete pathways on a volcano-shaped FES.


Sign in / Sign up

Export Citation Format

Share Document