scholarly journals Silty Clay Stabilization Using Metakaolin-Based Geopolymer Binder

2021 ◽  
Vol 9 ◽  
Author(s):  
Shengnian Wang ◽  
Jun Su ◽  
Zhijian Wu ◽  
Wei Ma ◽  
Yue Li ◽  
...  

Geopolymer binders are adjudged as the latest wave of sustainable alkali-activated materials for soil stabilization due to their excellent bonding properties. This study applied metakaolin as a precursor for synthesizing the geopolymer binder by employing the mixture of quicklime and sodium bicarbonate as an alkali activator. The optimal mass mixing ratio of the alkali activator, metakaolin, and silty clay was determined by unconfined compression tests. The stabilization mechanisms of the geopolymer binder were measured by x-ray diffraction and Fourier transform infrared spectroscopy. The microstructural characteristics of the geopolymer-stabilized silty clay were observed by scanning electron microscopy with an energy dispersive x-ray spectroscopy and mercury intrusion porosimetry test for understanding the strengthening mechanism of the silty clay after the treatment. Results indicate that the optimal mass mixing ratio of the alkali activator, metakaolin, and silty clay is 1:2:17, and the unconfined compressive strength of the geopolymer-stabilized silty clay reaches the maximum value of 0.85 MPa with adding 15 wt% of the geopolymer binder. Diffraction patterns show an insufficient polymerization of the geopolymer binder in the silty clay in the early days but a rapid synthesis of aluminosilicate gels after that. The new asymmetrical stretching vibration peaks signified the formation of aluminosilicate networks and are responsible for the strength improvement of the silty clay. Microstructural analyses further confirm the formation of aluminosilicate gels and their positive impacts on the structure of the silty clay over curing age.

Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


1995 ◽  
Vol 50 (7) ◽  
pp. 1025-1029 ◽  
Author(s):  
J. Baurmeister ◽  
A. Franken ◽  
W. Preetz

By reaction of [N(C4H9 )4]2 [B6H6] with iodomethyl-trimethylsilane in acetonitrile a solution with trimethylsilylm ethyl-closo-hexaborate(1-)anions, [B6H6 (CH2Si(CH3)3)]-, is formed. The crystal structure of [P(C6H5 )4][B6H6(CH2Si(CH3)3)] has been determined by single crystal X-ray diffraction analysis; monoclinic, space group P21/n with a = 16.140(2), b = 11.646(8), c = 16.731(3) Å, β 109.664(11)°. The 11B NMR spectrum reveals features of a mono hetero substituted octahedral B6 cage. The 13C NMR spectrum exhibits a quartet at +0.18 ppm with 1J(C,H) = 118 Hz for the three methyl groups and a weak multiplet at -0.65 ppm for the methylene bridge due to quadrupole coupling with the boron atoms. In the 29Si NMR spectrum a decet at +2.25 ppm with 2J(C,H ) = 6.9 Hz is observed. The B -C stretching vibration is observed at 1155 cm-1 in the IR and Raman spectrum.


2015 ◽  
Vol 820 ◽  
pp. 497-502 ◽  
Author(s):  
Danubia Lisbôa da Costa ◽  
Rosiane Maria da Costa Farias ◽  
Aluska Nascimento Simões Braga ◽  
Romualdo Rodrigues Menezes ◽  
Gelmires de Araujo Neves

Several years ago the study on modification of existing materials that have enhanced properties has gained prominence. In this scenario, the geopolymeric binders, currently widely used in the construction industry have emerged. Thus, this study aimed to evaluate the influence of alumina addition on the mechanical and thermal properties of metakaolin in geopolymer binder. The geopolymers were synthesized from mixtures of metakaolin/alumina and sodium hydroxide, pressed and characterized by diffraction of X-ray and differential thermal analysis and thermogravimetric. Two types of alumina were used in different amounts (14% and 7%) in order to evaluate the effect of the load binder obtained. It can be seen that the incorporation of alumina into the system caused an increase in strength of products obtained as well as a reduction in total mass loss of the sample , especially when the use of fine alumina.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1933 ◽  
Author(s):  
Chenglong Yin ◽  
Wei Zhang ◽  
Xunli Jiang ◽  
Zhiyi Huang

Initial water content significantly affects the efficiency of soil stabilization. In this study, the effects of initial water content on the compressibility, strength, microstructure, and composition of a lean clay soil stabilized by compound calcium-based stabilizer were investigated by static compaction test, unconfined compression test, optical microscope observations, environment scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The results indicate that as the initial water content increases in the range studied, both the compaction energy and the maximum compaction force decrease linearly and there are less soil aggregates or agglomerations, and a smaller proportion of large pores in the compacted mixture structure. In addition, for specimens cured with or without external water supply and under different compaction degrees, the variation law of the unconfined compressive strength with initial water content is different and the highest strength value is obtained at various initial water contents. With the increase of initial water content, the percentage of the oxygen element tends to increase in the reaction products of the calcium-based stabilizer, whereas the primary mineral composition of the soil-stabilizer mixture did not change notably.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
C. Galán-Marín ◽  
C. Rivera-Gómez ◽  
F. Bradley

The aim of this research study was to evaluate the influence of utilising natural polymers as a form of soil stabilization, in order to assess their potential for use in building applications. Mixtures were stabilized with a natural polymer (alginate) and reinforced with wool fibres in order to improve the overall compressive and flexural strength of a series of composite materials. Ultrasonic pulse velocity (UPV) and mechanical strength testing techniques were then used to measure the porous properties of the manufactured natural polymer-soil composites, which were formed into earth blocks. Mechanical tests were carried out for three different clays which showed that the polymer increased the mechanical resistance of the samples to varying degrees, depending on the plasticity index of each soil. Variation in soil grain size distributions and Atterberg limits were assessed and chemical compositions were studied and compared. X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), and energy dispersive X-ray fluorescence (EDXRF) techniques were all used in conjunction with qualitative identification of the aggregates. Ultrasonic wave propagation was found to be a useful technique for assisting in the determination of soil shrinkage characteristics and fibre-soil adherence capacity and UPV results correlated well with the measured mechanical properties.


2004 ◽  
Vol 19 (5) ◽  
pp. 1531-1538 ◽  
Author(s):  
Guangyin Yuan ◽  
Kenji Amiya ◽  
Hidemi Kato ◽  
Akihisa Inoue

The structure and mechanical properties of Mg–Zn–Al–Y base cast alloys containing an icosahedral quasicrystal phase (i-phase) as a main strengthening phase were investigated. Mg–8Zn–4Al–xY base bulk alloys containing the i-phase were prepared by casting into a copper mold at moderate cooling rates. The Y addition was effective for decreasing the size of the i-phase and the increasing the homogeneity of its dispersed state. The mechanical properties examined by compression tests at room temperature were much superior to those of a conventional AZ91 Mg alloy. The creep tests at elevated temperatures indicated a promising high temperature creep resistance of the quasicrystal-reinforced Mg–Zn–Al–Y cast alloy. The strengthening mechanism was also discussed.


ACS Omega ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 14981-14985 ◽  
Author(s):  
Rui Yang ◽  
David J. Morris ◽  
Tatsuya Higaki ◽  
Matthew J. Ward ◽  
Rongchao Jin ◽  
...  

2012 ◽  
Vol 630 ◽  
pp. 35-40
Author(s):  
K.H. Jung ◽  
B. Ahn ◽  
S. Lee ◽  
D.S. Choi ◽  
Y.S. Lee ◽  
...  

In this research, the effect of casting methods on the workability of magnesium alloy ZK60A was investigated by comparing two different billets, fabricated by semi-continuous casting and die casting. To determine the workability of the materials, uniaxial compression tests were conducted at different elevated temperatures and strain rate of 0.01/s. In addition, the X-ray inspection system and electron backscatter diffraction (EBSD) were employed to compare their internal defects and microstructures, respectively. The workability of ZK60A depending on the casting methods is discussed based on the obtained experimental results.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Ateş

Soil stabilization has been widely used as an alternative to substitute the lack of suitable material on site. The use of nontraditional chemical stabilizers in soil improvement is growing daily. In this study a laboratory experiment was conducted to evaluate the effects of waterborne polymer on unconfined compression strength and to study the effect of cement grout on pre-venting of liquefiable sandy soils. The laboratory tests were performed including grain size of sandy soil, unit weight, ultrasonic pulse velocity, and unconfined compressive strength test. The sand and various amounts of polymer (1%, 2%, 3%, and 4%) and cement (10%, 20%, 30%, and 40%) were mixed with all of them into dough using mechanical kneader in laboratory conditions. Grouting experiment is performed with a cylindrical mould of  mm. The samples were subjected to unconfined compression tests to determine their strength after 7 and 14 days of curing. The results of the tests indicated that the waterborne polymer significantly improved the unconfined compression strength of sandy soils which have susceptibility of liquefaction.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5384
Author(s):  
Yonghyun Lee ◽  
Sang Won Jung ◽  
Sang Hwi Park ◽  
Jung Whan Yoo ◽  
Juhyun Park

The doping of tungsten into VO2 (M) via a polyol process that is based on oligomerization of ammonium metavanadate and ethylene glycol (EG) to synthesize a vanadyl ethylene glycolate (VEG) followed by postcalcination was carried out by simply adding 1-dodecanol and the tungsten source tungstenoxytetrachloride (WOCl4). Tungsten-doped VEGs (W-VEGs) and their calcinated compounds (WxVO2) were prepared with varying mixing ratios of EG to 1-dodecanol and WOCl4 concentrations. Characterizations of W-VEGs by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and infrared and transmittance spectroscopy showed that tungsten elements were successfully doped into WxVO2, thereby decreasing the metal-insulator transition temperature from 68 down to 51 °C. Our results suggested that WOCl4 variously combined with 1-dodecanol might interrupt the linear growth of W-VEGs, but that such an interruption might be alleviated at the optimal 1:1 mixing ratio of EG to 1-dodecanol, resulting in the successful W doping. The difference in the solar modulations of a W0.0207VO2 dispersion measured at 20 and 70 °C was increased to 21.8% while that of a pure VO2 dispersion was 2.5%. It was suggested that WOCl4 coupled with both EG and 1-dodecanol at an optimal mixing ratio could improve the formation of W-VEG and WxVO2 and that the bulky dodecyl chains might act as defects to decrease crystallinity.


Sign in / Sign up

Export Citation Format

Share Document