scholarly journals A single-nucleotide change underlies the genetic assimilation of a plastic trait

2021 ◽  
Vol 7 (6) ◽  
pp. eabd9941
Author(s):  
Paul Vigne ◽  
Clotilde Gimond ◽  
Céline Ferrari ◽  
Anne Vielle ◽  
Johan Hallin ◽  
...  

Genetic assimilation—the evolutionary process by which an environmentally induced phenotype is made constitutive—represents a fundamental concept in evolutionary biology. Thought to reflect adaptive phenotypic plasticity, matricidal hatching in nematodes is triggered by maternal nutrient deprivation to allow for protection or resource provisioning of offspring. Here, we report natural Caenorhabditis elegans populations harboring genetic variants expressing a derived state of near-constitutive matricidal hatching. These variants exhibit a single amino acid change (V530L) in KCNL-1, a small-conductance calcium-activated potassium channel subunit. This gain-of-function mutation causes matricidal hatching by strongly reducing the sensitivity to environmental stimuli triggering egg-laying. We show that reestablishing the canonical KCNL-1 protein in matricidal isolates is sufficient to restore canonical egg-laying. While highly deleterious in constant food environments, KCNL-1 V530L is maintained under fluctuating resource availability. A single point mutation can therefore underlie the genetic assimilation—by either genetic drift or selection—of an ancestrally plastic trait.

2020 ◽  
Author(s):  
Paul Vigne ◽  
Clotilde Gimond ◽  
Céline Ferrari ◽  
Anne Vielle ◽  
Johan Hallin ◽  
...  

Genetic assimilation – the evolutionary process by which an ancestral environmentally sensitive phenotype is made constitutive – is a fundamental concept in biology. Its evolutionary relevance is debated, and our understanding of its prevalence, and underlying genetics and molecular mechanisms, is poor. Matricidal hatching is an extreme form of maternal provisioning induced by adverse conditions, which varies among Caenorhabditis elegans populations. We identified wild isolates, sampled from natural populations across multiple years and locations, that express a derived state of near-constitutive matricidal hatching. A single amino acid change in kcnl-1, encoding a small-conductance calcium-activated potassium channel subunit, explains most of this variation. A gain-of-function mutation altering the S6 transmembrane domain causes inappropriate activation of the K+ channel, leading to reduced vulval muscle excitability, and thus reduced expulsion of embryos, irrespective of environment. Using reciprocal allelic replacements, we show that this amino acid change is sufficient to induce constitutive matricidal hatching whilst re-establishing the ancestral protein abolishes matricidal hatching and restores egg-laying, thereby doubling lifetime reproductive fitness under benign conditions. While highly deleterious in the laboratory, experimental evolution showed that KNCL-1(V530L) is maintained under fluctuating resource availability. Selection on a single point mutation can therefore underlie the genetic assimilation of an ancestrally plastic trait with drastic life-history consequences.


1998 ◽  
Vol 140 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Malini Vashishtha ◽  
Thomas Phalen ◽  
Marianne T. Marquardt ◽  
Jae S. Ryu ◽  
Alice C. Ng ◽  
...  

Membrane fusion and budding are key steps in the life cycle of all enveloped viruses. Semliki Forest virus (SFV) is an enveloped alphavirus that requires cellular membrane cholesterol for both membrane fusion and efficient exit of progeny virus from infected cells. We selected an SFV mutant, srf-3, that was strikingly independent of cholesterol for growth. This phenotype was conferred by a single amino acid change in the E1 spike protein subunit, proline 226 to serine, that increased the cholesterol independence of both srf-3 fusion and exit. The srf-3 mutant emphasizes the relationship between the role of cholesterol in membrane fusion and virus exit, and most significantly, identifies a novel spike protein region involved in the virus cholesterol requirement.


2019 ◽  
Vol 116 (37) ◽  
pp. 18473-18478 ◽  
Author(s):  
Jason Hill ◽  
Erik D. Enbody ◽  
Mats E. Pettersson ◽  
C. Grace Sprehn ◽  
Dorte Bekkevold ◽  
...  

The evolutionary process that occurs when a species colonizes a new environment provides an opportunity to explore the mechanisms underlying genetic adaptation, which is essential knowledge for understanding evolution and the maintenance of biodiversity. Atlantic herring has an estimated total breeding stock of about 1 trillion (1012) and has colonized the brackish Baltic Sea within the last 10,000 y. Minute genetic differentiation between Atlantic and Baltic herring populations at selectively neutral loci combined with this rapid adaptation to a new environment facilitated the identification of hundreds of loci underlying ecological adaptation. A major question in the field of evolutionary biology is to what extent such an adaptive process involves selection of novel mutations with large effects or genetic changes at many loci, each with a small effect on phenotype (i.e., selection on standing genetic variation). Here we show that a missense mutation inrhodopsin(Phe261Tyr) is an adaptation to the red-shifted Baltic Sea light environment. The transition from phenylalanine to tyrosine differs only by the presence of a hydroxyl moiety in the latter, but this results in an up to 10-nm red-shifted light absorbance of the receptor. Remarkably, an examination of the rhodopsin sequences from 2,056 species of fish revealed that the same missense mutation has occurred independently and been selected for during at least 20 transitions between light environments across all fish. Our results provide a spectacular example of convergent evolution and how a single amino acid change can have a major effect on ecological adaptation.


2017 ◽  
Author(s):  
Christina C. Saak ◽  
Martha A. Zepeda-Rivera ◽  
Karine A. Gibbs

AbstractThe type VI secretion (T6S) system is a molecular device for the delivery of proteins from one cell into another. T6S function depends on the contractile sheath comprised of TssB/VipA and TssC/VipB proteins. We previously reported on a mutant variant of TssB that disrupts T6S-dependent export of the self-identity protein, IdsD, in the bacterium Proteus mirabilis. Here we determined the mechanism underlying that initial observation. We show that T6S-dependent export of multiple self-recognition proteins is abrogated in this mutant strain. We have mapped the mutation, which is a single amino acid change, to a region predicted to be involved in the formation of the TssB-TssC sheath. We have demonstrated that this mutation does indeed inhibit sheath formation, thereby explaining the global disruption of T6S activity. We propose that this mutation could be utilized as an important tool for studying functions and behaviors associated with T6S systems.


Author(s):  
Shereen A. Murugayah ◽  
Gary B. Evans ◽  
Joel D. A. Tyndall ◽  
Monica L. Gerth

Abstract Objective To change the specificity of a glutaryl-7-aminocephalosporanic acid acylase (GCA) towards N-acyl homoserine lactones (AHLs; quorum sensing signalling molecules) by site-directed mutagenesis. Results Seven residues were identified by analysis of existing crystal structures as potential determinants of substrate specificity. Site-saturation mutagenesis libraries were created for each of the seven selected positions. High-throughput activity screening of each library identified two variants—Arg255Ala, Arg255Gly—with new activities towards N-acyl homoserine lactone substrates. Structural modelling of the Arg255Gly mutation suggests that the smaller side-chain of glycine (as compared to arginine in the wild-type enzyme) avoids a key clash with the acyl group of the N-acyl homoserine lactone substrate. Conclusions Mutation of a single amino acid residue successfully converted a GCA (with no detectable activity against AHLs) into an AHL acylase. This approach may be useful for further engineering of ‘quorum quenching’ enzymes.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 289
Author(s):  
Kathleen K. M. Glover ◽  
Danica M. Sutherland ◽  
Terence S. Dermody ◽  
Kevin M. Coombs

Studies of conditionally lethal mutants can help delineate the structure-function relationships of biomolecules. Temperature-sensitive (ts) mammalian reovirus (MRV) mutants were isolated and characterized many years ago. Two of the most well-defined MRV ts mutants are tsC447, which contains mutations in the S2 gene encoding viral core protein σ2, and tsG453, which contains mutations in the S4 gene encoding major outer-capsid protein σ3. Because many MRV ts mutants, including both tsC447 and tsG453, encode multiple amino acid substitutions, the specific amino acid substitutions responsible for the ts phenotype are unknown. We used reverse genetics to recover recombinant reoviruses containing the single amino acid polymorphisms present in ts mutants tsC447 and tsG453 and assessed the recombinant viruses for temperature-sensitivity by efficiency-of-plating assays. Of the three amino acid substitutions in the tsG453 S4 gene, Asn16-Lys was solely responsible for the tsG453ts phenotype. Additionally, the mutant tsC447 Ala188-Val mutation did not induce a temperature-sensitive phenotype. This study is the first to employ reverse genetics to identify the dominant amino acid substitutions responsible for the tsC447 and tsG453 mutations and relate these substitutions to respective phenotypes. Further studies of other MRV ts mutants are warranted to define the sequence polymorphisms responsible for temperature sensitivity.


Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1276-1282 ◽  
Author(s):  
DM Lublin ◽  
G Mallinson ◽  
J Poole ◽  
ME Reid ◽  
ES Thompson ◽  
...  

Abstract The human erythrocyte blood group system Cromer consists of high- incidence and low-incidence antigens that reside on decay-accelerating factor (DAF; CD55), a glycosyl-phosphatidylinositol-anchored membrane protein that regulates complement activation on cell surfaces. In the Cromer phenotypes Dr(a-) and Inab there is reduced or absent expression of DAF, respectively. This study investigated the molecular basis of the reduced DAF expression by polymerase chain reaction amplification of genomic DNA and RNA/cDNA obtained from Epstein-Barr virus- transformed lymphoblastoid cell lines. Sequence analysis of the Inab propositus showed a single nucleotide substitution in exon 2 of the DAF gene and at the corresponding position in the cDNA, G314-->A resulting in Trp53-->Stop. This truncation near the amino terminus explains the complete absence of surface DAF in the Inab phenotype. A similar analysis was performed for two Dr(a-) individuals, including KZ, who was previously reported to be Inab phenotype but is now shown by immunochemical and serologic methods to be Dr(a-) phenotype. A single nucleotide change was found in exon 5 of the DAF gene, C649-->T resulting in Ser165-->Leu, which we had previously shown to lead to loss of the Dra epitope. However, two species of cDNA were found, one encoding full-length DAF with the single amino acid change and the more abundant species having a 44-nucleotide deletion. The 44 nucleotide deletion includes the single polymorphic site, which creates a cryptic branch point in the Dr(a-) allele that leads to use of a downstream cryptic acceptor splice site. This shifts the reading frame and leads to a premature stop codon that precludes membrane anchoring. Thus, the single point mutation in the Dr(a-) phenotype results in a novel use of alternative splicing and provides a molecular explanation for both the antigenicity and the reduced DAF expression seen in this phenotype.


Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1276-1282 ◽  
Author(s):  
DM Lublin ◽  
G Mallinson ◽  
J Poole ◽  
ME Reid ◽  
ES Thompson ◽  
...  

The human erythrocyte blood group system Cromer consists of high- incidence and low-incidence antigens that reside on decay-accelerating factor (DAF; CD55), a glycosyl-phosphatidylinositol-anchored membrane protein that regulates complement activation on cell surfaces. In the Cromer phenotypes Dr(a-) and Inab there is reduced or absent expression of DAF, respectively. This study investigated the molecular basis of the reduced DAF expression by polymerase chain reaction amplification of genomic DNA and RNA/cDNA obtained from Epstein-Barr virus- transformed lymphoblastoid cell lines. Sequence analysis of the Inab propositus showed a single nucleotide substitution in exon 2 of the DAF gene and at the corresponding position in the cDNA, G314-->A resulting in Trp53-->Stop. This truncation near the amino terminus explains the complete absence of surface DAF in the Inab phenotype. A similar analysis was performed for two Dr(a-) individuals, including KZ, who was previously reported to be Inab phenotype but is now shown by immunochemical and serologic methods to be Dr(a-) phenotype. A single nucleotide change was found in exon 5 of the DAF gene, C649-->T resulting in Ser165-->Leu, which we had previously shown to lead to loss of the Dra epitope. However, two species of cDNA were found, one encoding full-length DAF with the single amino acid change and the more abundant species having a 44-nucleotide deletion. The 44 nucleotide deletion includes the single polymorphic site, which creates a cryptic branch point in the Dr(a-) allele that leads to use of a downstream cryptic acceptor splice site. This shifts the reading frame and leads to a premature stop codon that precludes membrane anchoring. Thus, the single point mutation in the Dr(a-) phenotype results in a novel use of alternative splicing and provides a molecular explanation for both the antigenicity and the reduced DAF expression seen in this phenotype.


2005 ◽  
Vol 16 (8) ◽  
pp. 3810-3820 ◽  
Author(s):  
Mark S. Miller ◽  
Jessica M. Esparza ◽  
Andrew M. Lippa ◽  
Fordyce G. Lux ◽  
Douglas G. Cole ◽  
...  

The Chlamydomonas anterograde intraflagellar transport motor, kinesin-2, is isolated as a heterotrimeric complex containing two motor subunits and a nonmotor subunit known as kinesin-associated polypeptide or KAP. One of the two motor subunits is encoded by the FLA10 gene. The sequence of the second motor subunit was obtained by mass spectrometry and sequencing. It shows 46.9% identity with the Fla10 motor subunit and the gene maps to linkage group XII/XIII near RPL9. The temperature-sensitive flagellar assembly mutants fla1 and fla8 are linked to this kinesin-2 motor subunit. In each strain, a unique single point mutation gives rise to a unique single amino acid substitution within the motor domain. The fla8 strain is named fla8-1 and the fla1 strain is named fla8-2. The fla8 and fla10 alleles show a chromosome loss phenotype. To analyze this chromosome loss phenotype, intragenic revertants of fla8-1, fla8-2, and fla10-14 were generated. The analysis of the mutants and the revertants demonstrates the importance of a pocket in the amino terminus of these motor subunits for both motor activity and for a novel, dominant effect on the fidelity of chromosome segregation.


2001 ◽  
Vol 8 (2) ◽  
pp. 297-302 ◽  
Author(s):  
Dongwan Yoo ◽  
Dirk Deregt

ABSTRACT The spike glycoprotein is a major neutralizing antigen of bovine coronavirus (BCV). Conformational neutralizing epitopes of group A and group B monoclonal antibodies (MAbs) have previously been mapped to two domains at amino acids 351 to 403 (domain I) and amino acids 517 to 621 (domain II). To further map antigenic sites, neutralization escape mutants of BCV were selected with a group A MAb which has both in vitro and in vivo virus-neutralizing ability. The escape mutants were demonstrated to be neutralization resistant to the selecting group A MAb and remained sensitive to neutralization by a group B MAb. In radioimmunoprecipitation assays, the spike proteins of neutralization escape mutants were shown to have lost their reactivities with the selecting group A MAb. Sequence analysis of the spike protein genes of the escape mutants identified a single nucleotide substitution of C to T at position 1583, resulting in the change of alanine to valine at amino acid position 528 (A528V). The mutation occurs in domain II and in a location which corresponds to the hypervariable region of the spike protein of the coronavirus mouse hepatitis virus. Experimental introduction of the A528V mutation into the wild-type spike protein resulted in the loss of MAb binding of the mutant protein, confirming that the single point mutation was responsible for the escape of BCV from immunological selective pressure.


Sign in / Sign up

Export Citation Format

Share Document