scholarly journals Representation of Distance and Direction of Nearby Boundaries in Retrosplenial Cortex

2019 ◽  
Author(s):  
Joeri B.G. van Wijngaarden ◽  
Susanne S. Babl ◽  
Hiroshi T. Ito

AbstractBorders and edges are salient and behaviourally relevant features for navigating the environment. The brain forms dedicated neural representations of environmental boundaries, which are assumed to serve as a reference for spatial coding. Here we expand this border coding network to include the retrosplenial cortex (RSC) in which we identified neurons that increase their firing near all boundaries of an arena. RSC border cells specifically encode walls, but not objects, and maintain their tuning in the absence of direct sensory detection. Unlike border cells in the medial entorhinal cortex (MEC), RSC border cells are sensitive to the animal’s direction to nearby walls located contralateral to the recorded hemisphere. Pharmacogenetic inactivation of MEC led to a disruption of RSC border coding, but not vice versa, indicating network directionality. Together these data shed light on how information about distance and direction of boundaries is generated in the brain for guiding navigation behaviour.

2020 ◽  
Author(s):  
Isabel I. C. Low ◽  
Alex H. Williams ◽  
Malcolm G. Campbell ◽  
Scott W. Linderman ◽  
Lisa M. Giocomo

AbstractIn response to environmental changes, the medial entorhinal cortex alters its single-cell firing properties. This flexibility in neural coding is hypothesized to support navigation and memory by dividing sensory experience into unique contextual episodes. However, it is unknown how the entorhinal circuit transitions between different representations, particularly when sensory information is not delineated into discrete contexts. Here, we describe spontaneous and abrupt transitions between multiple spatial maps of an unchanging task and environment. These remapping events were synchronized across hundreds of medial entorhinal neurons and correlated with changes in running speed. While remapping altered spatial coding in individual neurons, we show that features of the environment were statistically preserved at the population-level, enabling simple decoding strategies. These findings provoke a reconsideration of how medial entorhinal cortex dynamically represents space and broadly suggest a remarkable capacity for higher-order cortical circuits to rapidly and substantially reorganize their neural representations.


Science ◽  
2018 ◽  
Vol 362 (6417) ◽  
pp. 945-949 ◽  
Author(s):  
Cheng Wang ◽  
Xiaojing Chen ◽  
Heekyung Lee ◽  
Sachin S. Deshmukh ◽  
D. Yoganarasimha ◽  
...  

Episodic memory, the conscious recollection of past events, is typically experienced from a first-person (egocentric) perspective. The hippocampus plays an essential role in episodic memory and spatial cognition. Although the allocentric nature of hippocampal spatial coding is well understood, little is known about whether the hippocampus receives egocentric information about external items. We recorded in rats the activity of single neurons from the lateral entorhinal cortex (LEC) and medial entorhinal cortex (MEC), the two major inputs to the hippocampus. Many LEC neurons showed tuning for egocentric bearing of external items, whereas MEC cells tended to represent allocentric bearing. These results demonstrate a fundamental dissociation between the reference frames of LEC and MEC neural representations.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Joeri BG van Wijngaarden ◽  
Susanne S Babl ◽  
Hiroshi T Ito

Spatial navigation requires landmark coding from two perspectives, relying on viewpoint-invariant and self-referenced representations. The brain encodes information within each reference frame but their interactions and functional dependency remains unclear. Here we investigate the relationship between neurons in the rat's retrosplenial cortex (RSC) and entorhinal cortex (MEC) that increase firing near boundaries of space. Border cells in RSC specifically encode walls, but not objects, and are sensitive to the animal’s direction to nearby borders. These egocentric representations are generated independent of visual or whisker sensation but are affected by inputs from MEC that contains allocentric spatial cells. Pharmaco- and optogenetic inhibition of MEC led to a disruption of border coding in RSC, but not vice versa, indicating allocentric-to-egocentric transformation. Finally, RSC border cells fire prospective to the animal’s next motion, unlike those in MEC, revealing the MEC-RSC pathway as an extended border coding circuit that implements coordinate transformation to guide navigation behavior.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Lu ◽  
Cheng Zhong ◽  
Lulu Wang ◽  
Pengfei Wei ◽  
Wei He ◽  
...  

Abstract Temporal lobe epilepsy (TLE) is one of the most common drug-resistant forms of epilepsy in adults and usually originates in the hippocampal formations. However, both the network mechanisms that support the seizure spread and the exact directions of ictal propagation remain largely unknown. Here we report the dissection of ictal propagation in the hippocampal–entorhinal cortex (HP–EC) structures using optogenetic methods in multiple brain regions of a kainic acid-induced model of TLE in VGAT-ChR2 transgenic mice. We perform highly temporally precise cross-area analyses of epileptic neuronal networks and find a feed-forward propagation pathway of ictal discharges from the dentate gyrus/hilus (DGH) to the medial entorhinal cortex, instead of a re-entrant loop. We also demonstrate that activating DGH GABAergic interneurons can significantly inhibit the spread of ictal seizures and largely rescue behavioural deficits in kainate-exposed animals. These findings may shed light on future therapeutic treatments of TLE.


2019 ◽  
Author(s):  
Dóra É. Csordás ◽  
Caroline Fischer ◽  
Johannes Nagele ◽  
Martin Stemmler ◽  
Andreas V.M. Herz

AbstractPrincipal neurons in rodent medial entorhinal cortex (MEC) generate high-frequency bursts during natural behavior. While in vitro studies point to potential mechanisms that could support such burst sequences, it remains unclear whether these mechanisms are effective under in-vivo conditions. In this study, we focused on the membrane-potential dynamics immediately following action potentials, as measured in whole-cell recordings from male mice running in virtual corridors (Domnisoru et al., 2013). These afterpotentials consisted either of a hyperpolarization, an extended ramp-like shoulder, or a depolarization reminiscent of depolarizing afterpotentials (DAPs) recorded in vitro in MEC stellate and pyramidal neurons. Next, we correlated the afterpotentials with the cells’ propensity to fire bursts. All DAP cells with known location resided in Layer II, generated bursts, and their inter-spike intervals (ISIs) were typically between five and fifteen milliseconds. The ISI distributions of Layer-II cells without DAPs peaked sharply at around four milliseconds and varied only minimally across that group. This dichotomy in burst behavior is explained by cell-group-specific DAP dynamics. The same two groups of bursting neurons also emerged when we clustered extracellular spike-train autocorrelations measured in real two-dimensional arenas (Latuske et al., 2015). No difference in the spatial coding properties of the grid cells across all three groups was discernible. Layer III neurons were only sparsely bursting and had no DAPs. As various mechanisms for modulating the ion-channels underlying DAPs exist, our results suggest that the temporal features of MEC activity can be altered while maintaining the cells’ spatial tuning characteristics.Significance StatementDepolarizing afterpotentials (DAPs) are frequently observed in principal neurons from slice preparations of rodent medial entorhinal cortex (MEC), but their functional role in vivo is unknown. Analyzing whole-cell data from mice running on virtual tracks, we show that DAPs do occur during behavior. Cells with prominent DAPs are found in Layer II; their inter-spike intervals reflect DAP time-scales. In contrast, neither the rarely bursting cells in Layer III, nor the high-frequency bursters in Layer II, have a DAP. Extracellular recordings from mice exploring real two-dimensional arenas demonstrate that grid cells within these three groups have rather similar spatial coding properties. We conclude that DAPs shape the temporal but not the spatial response characteristics of principal neurons in MEC.Author contributionsAll authors designed research. DÉC, CF, and JN performed research and analyzed data (equal contribution). AVMH wrote and edited the paper with support from MS and the other authors.


Author(s):  
John J Tukker ◽  
Prateep Beed ◽  
Michael Brecht ◽  
Richard Kempter ◽  
Edvard I Moser ◽  
...  

The hippocampal formation is critically involved in learning and memory, and contains a large proportion of neurons encoding aspects of the organism's spatial surroundings. In the medial entorhinal cortex (MEC), this includes grid cells with their distinctive hexagonal firing fields, as well as a host of other functionally defined cell types including head-direction cells, speed cells, border cells, and object vector cells. Such spatial coding emerges from the processing of external inputs by local microcircuits. However, it remains unclear exactly how local microcircuits and their dynamics within the MEC contribute to spatial discharge patterns. In this review we focus on recent investigations of intrinsic MEC connectivity, which have started to describe and quantify both excitatory and inhibitory wiring in the superficial layers of the MEC. Although the picture is far from complete, it appears that these layers contain robust recurrent connectivity that could sustain the attractor dynamics posited to underlie grid-pattern formation. These findings pave the way to a deeper understanding of the mechanisms underlying spatial navigation and memory.


Science ◽  
2013 ◽  
Vol 340 (6128) ◽  
pp. 1232627 ◽  
Author(s):  
Sheng-Jia Zhang ◽  
Jing Ye ◽  
Chenglin Miao ◽  
Albert Tsao ◽  
Ignas Cerniauskas ◽  
...  

We used a combined optogenetic-electrophysiological strategy to determine the functional identity of entorhinal cells with output to the place-cell population in the hippocampus. Channelrhodopsin-2 (ChR2) was expressed selectively in the hippocampus-targeting subset of entorhinal projection neurons by infusing retrogradely transportable ChR2-coding recombinant adeno-associated virus in the hippocampus. Virally transduced ChR2-expressing cells were identified in medial entorhinal cortex as cells that fired at fixed minimal latencies in response to local flashes of light. A large number of responsive cells were grid cells, but short-latency firing was also induced in border cells and head-direction cells, as well as cells with irregular or nonspatial firing correlates, which suggests that place fields may be generated by convergence of signals from a broad spectrum of entorhinal functional cell types.


Neuron ◽  
2011 ◽  
Vol 70 (4) ◽  
pp. 773-786 ◽  
Author(s):  
Andrea Burgalossi ◽  
Lucas Herfst ◽  
Moritz von Heimendahl ◽  
Henning Förste ◽  
Kurt Haskic ◽  
...  

Science ◽  
2008 ◽  
Vol 322 (5909) ◽  
pp. 1865-1868 ◽  
Author(s):  
Trygve Solstad ◽  
Charlotte N. Boccara ◽  
Emilio Kropff ◽  
May-Britt Moser ◽  
Edvard I. Moser

We report the existence of an entorhinal cell type that fires when an animal is close to the borders of the proximal environment. The orientation-specific edge-apposing activity of these “border cells” is maintained when the environment is stretched and during testing in enclosures of different size and shape in different rooms. Border cells are relatively sparse, making up less than 10% of the local cell population, but can be found in all layers of the medial entorhinal cortex as well as the adjacent parasubiculum, often intermingled with head-direction cells and grid cells. Border cells may be instrumental in planning trajectories and anchoring grid fields and place fields to a geometric reference frame.


Sign in / Sign up

Export Citation Format

Share Document