scholarly journals Effects of extreme meteorological conditions in 2018 on European methane emissions estimated using atmospheric inversions

Author(s):  
R. L. Thompson ◽  
C. D. Groot Zwaaftink ◽  
D. Brunner ◽  
A. Tsuruta ◽  
T. Aalto ◽  
...  

The effect of the 2018 extreme meteorological conditions in Europe on methane (CH 4 ) emissions is examined using estimates from four atmospheric inversions calculated for the period 2005–2018. For most of Europe, we find no anomaly in 2018 compared to the 2005–2018 mean. However, we find a positive anomaly for the Netherlands in April, which coincided with positive temperature and soil moisture anomalies suggesting an increase in biogenic sources. We also find a negative anomaly for the Netherlands for September–October, which coincided with a negative anomaly in soil moisture, suggesting a decrease in soil sources. In addition, we find a positive anomaly for Serbia in spring, summer and autumn, which coincided with increases in temperature and soil moisture, again suggestive of changes in biogenic sources, and the annual emission for 2018 was 33 ± 38% higher than the 2005–2017 mean. These results indicate that CH 4 emissions from areas where the natural source is thought to be relatively small can still vary due to meteorological conditions. At the European scale though, the degree of variability over 2005–2018 was small, and there was negligible impact on the annual CH 4 emissions in 2018 despite the extreme meteorological conditions. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.

Author(s):  
Vimal Mishra ◽  
Saran Aadhar ◽  
Shanti Shwarup Mahto

AbstractFlash droughts cause rapid depletion in root-zone soil moisture and severely affect crop health and irrigation water demands. However, their occurrence and impacts in the current and future climate in India remain unknown. Here we use observations and model simulations from the large ensemble of Community Earth System Model to quantify the risk of flash droughts in India. Root-zone soil moisture simulations conducted using Variable Infiltration Capacity model show that flash droughts predominantly occur during the summer monsoon season (June–September) and driven by the intraseasonal variability of monsoon rainfall. Positive temperature anomalies during the monsoon break rapidly deplete soil moisture, which is further exacerbated by the land-atmospheric feedback. The worst flash drought in the observed (1951–2016) climate occurred in 1979, affecting more than 40% of the country. The frequency of concurrent hot and dry extremes is projected to rise by about five-fold, causing approximately seven-fold increase in flash droughts like 1979 by the end of the 21st century. The increased risk of flash droughts in the future is attributed to intraseasonal variability of the summer monsoon rainfall and anthropogenic warming, which can have deleterious implications for crop production, irrigation demands, and groundwater abstraction in India.


Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
Tara I. Yacovitch ◽  
Bruno Neininger ◽  
Scott C. Herndon ◽  
Hugo Denier van der Gon ◽  
Sander Jonkers ◽  
...  

The Groningen natural gas field in the Netherlands – one of Europe’s major gas fields – deploys a “production cluster” infrastructure with extraction, some processing and storage in a single facility. This region is also the site of intensive agriculture and cattle operations. We present results from a multi-scale measurement campaign of methane emissions, including ground and airborne-based estimates. Results are compared with inventory at both the facility and regional level. Investigation of production cluster emissions in the Groningen gas field shows that production volume alone is not a good indicator of whether, and how much, a site is emitting methane. Sites that are nominally shut down may still be emitting, and vice-versa. As a result, the inventory emission factors applied to these sites (i.e. weighted by production) do a poor job of reproducing individual site emissions. Additional facility-level case studies are presented, including a plume at 150 ± 50 kg CH4 hr–1 with an unidentified off-shore emission source, a natural gas storage facility and landfills. Methane emissions in a study region covering 6000 km2 and including the majority of the Groningen field are dominated by biogenic sources (e.g. agriculture, wetlands, cattle). Total methane emissions (8 ± 2 Mg hr–1) are lower than inventory predictions (14 Mg hr–1) but the proportion of fossil fuel sources is higher than indicated by the inventory. Apportionment of methane emissions between thermogenic and biogenic source types used ethane/methane ratios in aircraft flasks and ground-based source characterization. We find that emissions from the oil and gas sector account for 20% of regional methane, with 95% confidence limits of (0%, 51%). The experimental uncertainties bound the inventory apportionment of 1.9%, though the central estimate of 20% exceeds this result by nearly 10 times. This study’s uncertainties demonstrate the need for additional research focusing on emissions apportionment, inventory refinement and offshore platforms.


2021 ◽  
Author(s):  
Martin Van Damme ◽  
Lieven Clarisse ◽  
Bruno Franco ◽  
Mark A Sutton ◽  
Jan Willem Erisman ◽  
...  

<p>The Infrared Atmospheric Sounding Interferometer (IASI) mission consists of a suite of three infrared sounders providing today over 13 years of consistent global measurements (from end of 2007 up to now). In this work we use the recently developed version 3 of the IASI NH<sub>3</sub> dataset to derive global, regional and national trends from 2008 to 2018. Reported national trends are analysed in the light of changing anthropogenic and pyrogenic NH<sub>3</sub> emissions, meteorological conditions and the impact of sulphur and nitrogen oxides emissions. A case study is dedicated to the Netherlands. Temporal variation on shorter timescales will also be investigated.</p>


Author(s):  
Rogier van der Velde ◽  
M. Suhyb Salama ◽  
Omar Ali Eweys ◽  
Jun Wen ◽  
Qiang Wang

2020 ◽  
Author(s):  
Marjolein H.J. van Huijgevoort ◽  
Janine A. de Wit ◽  
Ruud P. Bartholomeus

<p>Extreme dry conditions occurred over the summer of 2018 in the Netherlands. This severe drought event led to very low groundwater  and surface water levels. These impacted several sectors like navigation, agriculture, nature and drinking water supply. Especially in the Pleistocene uplands of the Netherlands, the low groundwater levels had a large impact on crop yields and biodiversity in nature areas. Projections show that droughts with this severity will occur more often in the future due to changes in climate. To mitigate the impact of these drought events, water management needs to be altered.</p><p>In this study, we evaluated the 2018 drought event in the sandy regions of the Netherlands and studied which measures could be most effective to mitigate drought impact. We have included meteorological, soil moisture and hydrological drought and the propagation of the drought through these types. Droughts were determined with standardized indices (e.g. Standardized Precipitation Index) and the variable threshold level method. Investigated measures were, for example, higher water levels in ditches, reduced irrigation from groundwater, and increased water conservation in winter. We also studied the timing of these measures to determine the potential for mitigating effects during a drought versus the effectiveness of long term adaptation. The measures were simulated with the agro-hydrological Soil–Water–Atmosphere–Plant (SWAP) model for several areas across the Netherlands for both agricultural fields and nature sites.</p><p>As expected, decreasing irrigation from groundwater reduced the severity of the hydrological drought in the region. Severity of the soil moisture drought also decreased in fields that were never irrigated due to the effects of capillary rise from the groundwater, but, as expected, increased in currently irrigated fields. Increasing the level of a weir in ditches had a relatively small effect on the hydrological drought, provided water was available to sustain higher water levels. This measure is, therefore, better suited as a long term change than as ad hoc measure during a drought. The effectiveness of the measures depended on the characteristics of the regions; for some regions small changes led to increases in groundwater levels for several months, whereas in other regions effects were lost after a few weeks. This study gives insight into the most effective measures to mitigate drought impacts in low-lying sandy regions like the Netherlands.</p>


2017 ◽  
Vol 21 (4) ◽  
pp. 1947-1971 ◽  
Author(s):  
Anne F. Van Loon ◽  
Rohini Kumar ◽  
Vimal Mishra

Abstract. In 2015, central and eastern Europe were affected by a severe drought. This event has recently been studied from meteorological and streamflow perspective, but no analysis of the groundwater situation has been performed. One of the reasons is that real-time groundwater level observations often are not available. In this study, we evaluate two alternative approaches to quantify the 2015 groundwater drought over two regions in southern Germany and eastern Netherlands. The first approach is based on spatially explicit relationships between meteorological conditions and historic groundwater level observations. The second approach uses the Gravity Recovery Climate Experiment (GRACE) terrestrial water storage (TWS) and groundwater anomalies derived from GRACE-TWS and (near-)surface storage simulations by the Global Land Data Assimilation System (GLDAS) models. We combined the monthly groundwater observations from 2040 wells to establish the spatially varying optimal accumulation period between the Standardised Groundwater Index (SGI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at a 0.25° gridded scale. The resulting optimal accumulation periods range between 1 and more than 24 months, indicating strong spatial differences in groundwater response time to meteorological input over the region. Based on the estimated optimal accumulation periods and available meteorological time series, we reconstructed the groundwater anomalies up to 2015 and found that in Germany a uniform severe groundwater drought persisted for several months during this year, whereas the Netherlands appeared to have relatively high groundwater levels. The differences between this event and the 2003 European benchmark drought are striking. The 2003 groundwater drought was less uniformly pronounced, both in the Netherlands and Germany. This is because slowly responding wells (the ones with optimal accumulation periods of more than 12 months) still were above average from the wet year of 2002, which experienced severe flooding in central Europe. GRACE-TWS and GRACE-based groundwater anomalies did not capture the spatial variability of the 2003 and 2015 drought events satisfactorily. GRACE-TWS did show that both 2003 and 2015 were relatively dry, but the differences between Germany and the Netherlands in 2015 and the spatially variable groundwater drought pattern in 2003 were not captured. This could be associated with the coarse spatial scale of GRACE. The simulated groundwater anomalies based on GRACE-TWS deviated considerably from the GRACE-TWS signal and from observed groundwater anomalies. The uncertainty in the GRACE-based groundwater anomalies mainly results from uncertainties in the simulation of soil moisture by the different GLDAS models. The GRACE-based groundwater anomalies are therefore not suitable for use in real-time groundwater drought monitoring in our case study regions. The alternative approach based on the spatially variable relationship between meteorological conditions and groundwater levels is more suitable to quantify groundwater drought in near real-time. Compared to the meteorological drought and streamflow drought (described in previous studies), the groundwater drought of 2015 had a more pronounced spatial variability in its response to meteorological conditions, with some areas primarily influenced by short-term meteorological deficits and others influenced by meteorological deficits accumulated over the preceding 2 years or more. In drought management, this information is very useful and our approach to quantify groundwater drought can be used until real-time groundwater observations become readily available.


2021 ◽  
Author(s):  
Katrin M. Nissen ◽  
Stefan Rupp ◽  
Thomas M. Kreuzer ◽  
Björn Guse ◽  
Bodo Damm ◽  
...  

Abstract. A rockfall dataset for Germany is analysed with the objective of identifying the meteorological and hydrological (pre-) conditions that change the probability for such events in Central Europe. The factors investigated in the analysis are precipitation amount and intensity, freeze-thawing cycles as well as sub-surface moisture. As there is no suitable observational dataset for all relevant sub-surface moisture types (e.g. water in rock pores and cleft water) available, simulated soil moisture and parameterised pore water are tested as substitutes. The potential triggering factors were analysed both for the day of the event as well as for the days leading up to the event. It is found that the most important factor influencing rockfall probability in the research area is precipitation amount at the day of the event but the water content of the ground on that day and freeze-thawing cycles in the days prior to the event also influence the hazard probability. Comparing results with simulated soil moisture and parameterised pore water revealed that precipitation minus potential evaporation evaluated for a weekly period performs well as a proxy for the relevant sub-surface moisture types. A logistic regression model was built, which considers individual potential triggering factors as well as their interactions. Using this model the effects of meteorological conditions on rockfall probability in the Central European low mountain ranges can be quantified. The model suggests that precipitation is most efficient, when the moisture content of the ground is high. An increase of daily precipitation from its local 50th percentile to its 90th percentile approximately doubles the probability for a rockfall event under median sub-surface moisture conditions. When the moisture content of the ground is at its 95th percentile the same increase in precipitation leads to a four-fold increase in rockfall probability. The occurrence of a freeze-thaw cycle in the preceding days can further increase the rockfall hazard. The most critical combination can be expected in the winter season after a freeze-thaw transition which is followed by a day with high precipitation amounts and takes place in a region preconditioned by a high level of sub-surface moisture.


Author(s):  
Bronislava Mužíková ◽  
Tomáš Středa ◽  
Jana Podhrázská ◽  
František Toman

Wind erosion in the Czech Republic conditions poses relatively a lot of danger, especially for the most fertile areas, where agricultural land is more vulnerable due to the large pieces of land and inappropriate crop rotation. This process causes damage to agriculture by loss of topsoil, fertilizers, seeds and crop damage as well as sedimentation in water recipients and on roads. It also has negative impacts on human health (airborne dust). Wind erosion is especially affected by climatic elements (wind, temperature, precipitation and evaporation etc.) and soil characteristics (soil type, content of erodible particles, soil moisture). Wind erosion affects mainly light and medium heavy soil. South Moravia is an example of the territories to which this rule does not apply. Although soils in the Carpathian flysch subsoil are mainly heavy, erosion has been causing damage here for many decades. Quite strong dust storms are not rare, especially at the end of winter and in early spring when the soil is not covered by vegetation.Notable cases of dust storms in the area were recorded in local chronicles, and then written in the summary publication by dr. Švehlík. Interest of this publication was focused on the most destructive cases of dust storms in Bílé Karpaty foothills. The aim was to study meteorological conditions during the period before and during the occurrence of dust storms in the area in detail and to find the relationship between weather and the intensity of wind erosion. The data of wind speed and direction, temperature, precipitation and snow were evaluated. In all cases the average daily air temperature and ground air temperature was over the freezing point or closely under it. The temperature generally increased before the dust storm occurrence and it often happened from negative to positive temperature and the soil probably defrosted. Snow cover was very small or there was no snow cover at all. In the course of April wind erosion occurrence there was no snow and the precipitation was inconsiderable. Soil at the station was mostly bare, dry and defrosted.


Sign in / Sign up

Export Citation Format

Share Document