scholarly journals A Fully Inkjet-Printed Strain Sensor Based on Carbon Nanotubes

Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 792 ◽  
Author(s):  
Hsuan-Ling Kao ◽  
Cheng-Lin Cho ◽  
Li-Chun Chang ◽  
Chun-Bing Chen ◽  
Wen-Hung Chung ◽  
...  

A fully inkjet-printed strain sensor based on carbon nanotubes (CNTs) was fabricated in this study for microstrain and microcrack detection. Carbon nanotubes and silver films were used as the sensing layer and conductive layer, respectively. Inkjet-printed CNTs easily undergo agglomeration due to van der Waals forces between CNTs, resulting in uneven films. The uniformity of CNT film affects the electrical and mechanical properties. Multi-pass printing and pattern rotation provided precise quantities of sensing materials, enabling the realization of uniform CNT films and stable resistance. Three strain sensors printed eight-layer CNT film by unidirectional printing, rotated by 180° and 90° were compared. The low density on one side of eight-layer CNT film by unidirectional printing results in more disconnection and poor connectivity with the silver film, thereby, significantly increasing the resistance. For 180° rotation eight-layer strain sensors, lower sensitivity and smaller measured range were found because strain was applied to the uneven CNT film resulting in non-uniform strain distribution. Lower resistance and better strain sensitivity was obtained for eight-layer strain sensor with 90° rotation because of uniform film. Given the uniform surface morphology and saturated sheet resistance of the 20-layer CNT film, the strain performance of the 20-layer CNT strain sensor was also examined. Excluding the permanent destruction of the first strain, 0.76% and 1.05% responses were obtained for the 8- and 20-layer strain sensors under strain between 0% and 3128 µε, respectively, which demonstrates the high reproducibility and recoverability of the sensor. The gauge factor (GF) of 20-layer strain sensor was found to be 2.77 under strain from 71 to 3128 µε, which is higher than eight-layer strain sensor (GF = 1.93) due to the uniform surface morphology and stable resistance. The strain sensors exhibited a highly linear and reversible behavior under strain of 71 to 3128 µε, so that the microstrain level could be clearly distinguished. The technology of the fully inkjet-printed CNT-based microstrain sensor provides high reproducibility, stability, and rapid hardness detection.

Nanoscale ◽  
2018 ◽  
Vol 10 (28) ◽  
pp. 13599-13606 ◽  
Author(s):  
Binghao Liang ◽  
Zhiqiang Lin ◽  
Wenjun Chen ◽  
Zhongfu He ◽  
Jing Zhong ◽  
...  

A highly stretchable and sensitive strain sensor based on a gradient carbon nanotube was developed. The strain sensors show an unprecedented combination of both high sensitivity (gauge factor = 13.5) and ultra-stretchability (>550%).


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1701
Author(s):  
Ken Suzuki ◽  
Ryohei Nakagawa ◽  
Qinqiang Zhang ◽  
Hideo Miura

In this study, a basic design of area-arrayed graphene nanoribbon (GNR) strain sensors was proposed to realize the next generation of strain sensors. To fabricate the area-arrayed GNRs, a top-down approach was employed, in which GNRs were cut out from a large graphene sheet using an electron beam lithography technique. GNRs with widths of 400 nm, 300 nm, 200 nm, and 50 nm were fabricated, and their current-voltage characteristics were evaluated. The current values of GNRs with widths of 200 nm and above increased linearly with increasing applied voltage, indicating that these GNRs were metallic conductors and a good ohmic junction was formed between graphene and the electrode. There were two types of GNRs with a width of 50 nm, one with a linear current–voltage relationship and the other with a nonlinear one. We evaluated the strain sensitivity of the 50 nm GNR exhibiting metallic conduction by applying a four-point bending test, and found that the gauge factor of this GNR was about 50. Thus, GNRs with a width of about 50 nm can be used to realize a highly sensitive strain sensor.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1469 ◽  
Author(s):  
Orathai Tangsirinaruenart ◽  
George Stylios

This research presents an investigation of novel textile-based strain sensors and evaluates their performance. The electrical resistance and mechanical properties of seven different textile sensors were measured. The sensors are made up of a conductive thread, composed of silver plated nylon 117/17 2-ply, 33 tex and 234/34 4-ply, 92 tex and formed in different stitch structures (304, 406, 506, 605), and sewn directly onto a knit fabric substrate (4.44 tex/2 ply, with 2.22, 4.44 and 7.78 tex spandex and 7.78 tex/2 ply, with 2.22 and 4.44 tex spandex). Analysis of the effects of elongation with respect to resistance indicated the ideal configuration for electrical properties, especially electrical sensitivity and repeatability. The optimum linear working range of the sensor with minimal hysteresis was found, and the sensor’s gauge factor indicated that the sensitivity of the sensor varied significantly with repeating cycles. The electrical resistance of the various stitch structures changed significantly, while the amount of drift remained negligible. Stitch 304 2-ply was found to be the most suitable for strain movement. This sensor has a wide working range, well past 50%, and linearity (R2 is 0.984), low hysteresis (6.25% ΔR), good gauge factor (1.61), and baseline resistance (125 Ω), as well as good repeatability (drift in R2 is −0.0073). The stitch-based sensor developed in this research is expected to find applications in garments as wearables for physiological wellbeing monitoring such as body movement, heart monitoring, and limb articulation measurement.


2018 ◽  
Vol 4 (2) ◽  
pp. 1 ◽  
Author(s):  
Angelica Campigotto ◽  
Stephane Leahy ◽  
Ayan Choudhury ◽  
Guowei Zhao ◽  
Yongjun Lai

A novel, inexpensive, and easy-to-use strain sensor using polydimethylsiloxane (PDMS)  was developed. The sensor consists of a microchannel that is partially filled with a coloured liquid and embedded in a piece of PDMS. A finite element model was developed to optimize the geometry of the microchannel to achieve higher sensitivity. The highest gauge factor that was measured experimentally was 41. The gauge factor was affected by the microchannel’s square cross-sectional area, the number of basic units in the microchannel, and the inlet and outlet configuration. As a case study, the developed strain sensors were used to measure the rotation angle of the wrist and finger joints.


2011 ◽  
Vol 22 (18) ◽  
pp. 2155-2159 ◽  
Author(s):  
Y. Miao ◽  
L. Chen ◽  
Y. Lin ◽  
R. Sammynaiken ◽  
W. J. Zhang

The use of carbon nanotubes (CNTs) for construction of sensors is promising. This is due to some unique characteristics of CNTs. In recent years, strain sensors built from CNT composite films have been developed; however, their low piezoresistive sensitivity (gauge factor (GF)) in in-plane strain detection is a concern compared with other strain sensors. This article reports an experimental discovery of the superior piezoresistive response of a CNT film that is free of surfactants, known as the pure CNT film. The mechanism for the high GF with the pure CNT film strain sensors is also discussed.


2008 ◽  
Vol 15 (05) ◽  
pp. 525-530 ◽  
Author(s):  
SEN-JIANG YU ◽  
YONG-JU ZHANG

The formation mechanism and surface evolution of thin silver films deposited on silicone oil substrates by a DC-magnetron sputtering method are reported. As the film thickness increases, the deposited silver atoms first form compact clusters, then transfer to ramified aggregates and finally form a continuous film on the liquid substrate. After deposition, the surface morphology of the silver film is susceptible to evolve successively in the atmosphere condition, resulting in the formation of broad cracks and straight-sided (or worm-like) wrinkles. The evolution behaviors and underlying physical mechanisms of the cracks and wrinkles are presented and discussed in detail.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Fernando Martinez ◽  
Gregorio Obieta ◽  
Ion Uribe ◽  
Tomasz Sikora ◽  
Estibalitz Ochoteco

The design and characterization of polymer-based self-standing flexible strain sensors are presented in this work. Properties as lightness and flexibility make them suitable for the measurement of strain in applications related with wearable electronics such as robotics or rehabilitation devices. Several sensors have been fabricated to analyze the influence of size and electrical conductivity on their behavior. Elongation and applied charge were precisely controlled in order to measure different parameters as electrical resistance, gauge factor (GF), hysteresis, and repeatability. The results clearly show the influence of size and electrical conductivity on the gauge factor, but it is also important to point out the necessity of controlling the hysteresis and repeatability of the response for precision-demanding applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Wei Qiu ◽  
Shi-Lei Li ◽  
Wei-lin Deng ◽  
Di Gao ◽  
Yi-Lan Kang

A strain sensor composed of carbon nanotubes with Raman spectroscopy can achieve measurement of the three in-plane strain components in microscale. Based on previous work on the mathematic model of carbon nanotube strain sensors, this paper presents a detailed study on the optimization, diversification, and standardization of a CNT strain sensor from the viewpoint of metrology. A new miniaccessory for polarization control is designed, and two different preparing methods for CNT films as sensing media are introduced to provide diversified choices for applications. Then, the standard procedure of creating CNT strain sensors is proposed. Application experiments confirmed the effectiveness of the above improvement, which is helpful in developing this method for convenient metrology.


2016 ◽  
Vol 15 (05n06) ◽  
pp. 1660005
Author(s):  
Gaurav Sapra ◽  
Renu Vig ◽  
Manu Sharma

Carbon nanotubes (CNT) is turning out to be a replacement to all the existing traditional sensors due to their high gauge factor, multidirectional sensing capability, high flexibility, low mass density, high dynamic range and high sensitivity to strains at nano and macro- scales. The strain sensitivity of CNT-based strain sensors depends on number of parameters; quality and quantity of CNT used, type of polymer used, deposition and dispersion technique adopted and also on environmental conditions. Due to all these parameters, the piezoresistive behavior of CNT is diversified and it needs to be explored. This paper theoretically analyses the strain sensitivity of CNT-based strain sensors. The strain sensitivity response of CNT strain sensor is a result of change in total resistance of CNT network with respect to applied strain. The total resistance of CNT network consists of intrinsic resistance and inter-tube resistance. It has been found that the change in intrinsic resistance under strain is due to the variation of bandgap of individual, which depends on the chirality of the tube and it varies exponentially with strain. The inter-tube resistance of CNT network changes nonlinearly due to change in distance between neighboring CNTs with respect to applied strain. As the distance [Formula: see text] between CNTs increases due to applied strain, tunneling resistance [Formula: see text] increases nonlinearly in exponential manner. When the concentration of CNTs in composite is close to percolation threshold, then the change of inter-tube resistances is more dominant than intrinsic resistance. At percolation threshold, the total resistance of CNT networks changes nonlinearly and this effect of nonlinearity is due to tunneling effect. The strain sensitivity of CNT-based strain sensors also varies nonlinearly with the change in temperature. For the change of temperature from [Formula: see text]C to 50[Formula: see text]C, there is more than 100% change in strain sensitivity of CNT/polymer composite strain sensor. This change is mainly due to the infiltration of polymer into CNTs.


Sign in / Sign up

Export Citation Format

Share Document