scholarly journals Experimental Study on Light Weight Concrete Using Coconut Shell and Fly Ash

Author(s):  
Barkha Verma

Abstract: Aggregates provide volume at low cost, comprising 66% to 78% of the concrete. With increasing concern over the excessive exploitation of natural and quality aggregates, the aggregate produced from industrial wastes and agricultural wastes is the viable new source for building material. This study was carried out to determine the possibilities of using coconut shells as aggregate in concrete. Utilizing coconut shells as aggregate in concrete production not only solves the problem of disposing of this solid waste but also helps conserve natural resources. In this paper, the physical properties of crushed coconut shell aggregate were presented. The fresh concrete properties such as the density and slump and 28 days compressive strength of lightweight concrete made with coconut shell as coarse aggregate were also presented. The findings indicate that water absorption of the coconut shell aggregate was high about 24% but crushing value and impact value were comparable to that of other lightweight aggregates. The average fresh concrete density and 28days cube compressive strength of the concrete using coconut shell aggregate 1975kg/m3 and 19.1 N/mm2 respectively. It is concluded that crushed coconut shell is suitable when it is used as a substitute for conventional aggregates in lightweight concrete production. Keywords: Coarse Aggregate, Cement, Concrete, Fly Ash, Coconut shell Aggregate, Water, Compressive Strength, Workability, Fine Aggregate.

Author(s):  
Suwendy Arifin Et.al

Pervious concrete or non-fine concrete is a simple form of lightweight concrete made by eliminating the use of fine aggregates. As a result of not using fine aggregate in pervious concrete, then created a cavity filled with air and water can be passed. This cavity resulted in reduced density of the concrete as well as the reduced amount of area that needs to be covered by cement paste, thereby reducing the compressive strength. To increase the compressive strength of pervious concrete, in this study will utilize waste material. The waste material is the cocnut shell ash and coconut shell to strengthen the coarse aggregate bonds, so it is expected to increase the compressive strength along with the increase in permeability. Thus, in this study will replace part of the coarse aggregate with coconut shell with percentage 0%, 2,5%, 5%, 7,5%, 10% and partially replace cement with coconut shell ash with percentage 0%, 2,5%, 5%, 7,5%


2019 ◽  
Vol 7 (2) ◽  
pp. 102-108
Author(s):  
Yulin Patrisia ◽  
Topan Eka Putra

This study aimed to determine the influence of peat water on the mechanical properties of the paving block (compressive strength and water absorption) using coconut shell waste and fly ash as raw material. The background of the research were the lack utilization of fly ash, preparation for the handling and utilization of fly ash from power station at Pulang Pisau and Tumbang Kajuei (under construction), and the utilization of coconut shell to be more effective and economical. Paving block specimens were immersed in peat water to determine the effect of peat water and the rest were immersed in plain water. This experiment used fly ash as a partial replacement of cement and 2% coconut shell as a partial replacement of fine aggregate. The results of the analysis showed that: (a) Paving block using fly ash and coconut shells which were immersed in plain water experienced the increase in compressive strength and the decrease in water; (b) Paving block using fly ash and coconut shells soaked in peat water showed that by the increase of age, compressive strength was decrease and water absorption was increase; (c) The compressive strength of paving block specimens immersed in plain water and peat water showed relatively similar values at 7 and 28 days age, (d). Water absorption in paving block specimens soaked both in plain water and peat water showed relatively similar values at 7 days age, but at 28 days age the specimens immersed in peat water had greater water absorption.


2018 ◽  
Vol 4 (4) ◽  
pp. 54
Author(s):  
Iis Nurjamilah ◽  
Abinhot Sihotang

ABSTRAKKajian karakteristik beton memadat sendiri yang menggunakan serat ijuk merupakan sebuah kajian yang dilakukan untuk mengetahui pengaruh penambahan serat ijuk terhadap karakteristik beton memadat sendiri (SCC). Beton memadat sendiri yang menggunakan serat ijuk (PFSCC) didesain memiliki campuran yang encer, bermutu tinggi (= 40 MPa) dan memiliki persentase kekuatan lentur yang lebih baik. PFSCC  didapatkan dari hasil pencampuran antara semen sebanyak 85%, fly ash 15%, superplastizicer 1,5%, serat ijuk 0%, 0,5%; 1%; 1,5%; 2% dan 3% dari berat binder (semen + fly ash), kadar air 190 kg/m3, agregat kasar 552,47 kg/m3 dan pasir 1.063 kg/m3. Semakin banyak persentase penambahan serat ijuk ke dalam campuran berdampak terhadap menurunnya workability beton segar. Penambahan serat ijuk yang paling baik adalah sebanyak 1%, penambahan tersebut dapat meningkatkan kekuatan tekan beton sebesar 13% dan lentur sebesar 1,8%.Kata kunci: beton memadat sendiri (SCC), beton berserat, beton memadat sendiri yang menggunakan serat ijuk (PFSCC), serat ijuk ABSTRACTThe study of characteristics self compacting concrete using palm fibers is a study conducted to determine the effect of adding palm fibers to characteristics of self compacting concrete (SCC). palm fibers self compacting concrete (PFSCC) is designed to have a dilute mixture, high strength (= 40 MPa), and have better precentage flexural strength. PFSCC was obtained from mixing of 85% cement, 15% fly ash, 1.5% superplastizicer, 0%, 0.5%, 1%, 1.5%, 2% and 3% palm fibers from the weight of binder  (cement + fly ash), water content 190 kg/m3, coarse aggregate 552.47 kg/m3 and sand 1,063 kg/m3. The more persentage palm fibers content added to the mixture makes workability of fresh concrete decreases. The best addition of palm fiber is 1%, this addition can increases the compressive strength 13% and flexural strength 1.8%.Keywords: self compacting concrete (SCC), fiber concrete, Palm fiber self compacting concrete (PFSCC), palm fiber


2018 ◽  
Vol 4 (4) ◽  
pp. 702 ◽  
Author(s):  
Armin Naibaho

The purpose of this research is to know the effectiveness of fly ash waste in marine concrete related to the average compressive strength to be used as a substitute for cement. The test is done for concrete base material, namely: coarse aggregate (gravel), fine aggregate (sand), fly ash, cement (PC = Portland Cement), water and additional material (superplasticizer). 10 cylinders were given each treatment with (0 %, 10 %, 20 %, 25 %) percentage of fly ash addition. The samples then soaked for 26 days in seawater. At 28th day, the sample was subjected to a compression test. Based on the results of analysis and discussion, then obtained: (1) The use of 10% fly ash amount will produce the biggest compressive strength  =  65.84 MPa; (2) When compared with the average compressive strength, the sample without using fly ash (0 %) has compressive power 62.02 MPa and 6.16 % increase in average compressive strength on the addition of 10 % fly ash 65.84 MPa, but in addition to 20 % fly ash there was a decrease of 9.13 % (56.36 MPa) and in addition of 25 % fly ash the average compressive strength decrease to 22.49 % (48.07 MPa).


Author(s):  
Nuttawut Intaboot ◽  
Kriangkrai Chartboot

This paper aimed to assess the potential of using limestone dust to replace sand at levels of 0, 20, 40, 60, 80 and 100% by weight. Concrete mix design for cement : fine aggregate : coarse aggregate was 1: 2 : 4 and 0.40, 0.50, 0.60 water-to-cement ratios were used. The study started by testing the basic properties of the material. The compressive strength test was done with curing for 7, 14, 21 and 28 days and modulus of elasticity of concrete at 28 days, after which the microstructural properties of concrete modified with limestone dust were investigated. The study found that the concrete had better workability when increasing the limestone dust content. The incorporation of 40% limestone dust at 0.50 water-to-cement ratios was found to improve the compressive strength of the concrete and resulted in the maximum compressive strength. However, high levels of replacement lead to porous microstructures. Moreover, the use of limestone dust in concrete production tends to be more cost-effective. Therefore, the results of this research seemingly provide confirmation and support for the utilization of these waste materials by reducing the use of natural resources. Further, it is a goal of local governments to help promote the value of limestone dust for future use.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 437
Author(s):  
V R.Prasath Kumar ◽  
K Gunasekaran ◽  
Sreerag K P

High standing estimation of building materials utilized for development is a component of incredible concern. Coconut shell as a completely substitution in the place of coarse aggregate may totally effective for designers in construction industry. The coconut shell concrete is a light weight solid which may decrease the self-heap of a structure. The under taken project depends on inspecting attributes of coconut shell concrete when contrasted with conventional concrete. Coconut shells going from 10mm strainer and held on 6.3mm were considered to utilize for this study. For the current study M100 grade concrete is used to cast the specimens. The principle properties considered testing on coconut shell concrete and conventional concrete is compressive strength, split tensile strength and flexural strength. Examples were taken by supplanting coarse aggregate with coconut shells completely and cement is supplanted by silica fume with various extents of 5%, 10%, 15%, 20%, 25% for compressive strength test and tests were done at 3, 7, 28, 56 and 90 days of curing, it is observed that the ideal compressive strength outcomes were obtained at 10% of silica fume. The flexural strength and  split tensile strength of the specimens are calculated with replacement of cement by silica fume with  different extents of 0%, 5%, 10% and 15%, tests were done at 3, 7 and 28 days of curing. The optimum replacement percentage of cement by silica fume is 10% for compressive strength, split tensile and flexural strength. The primary principle is to lessen the utilization of natural aggregate by supplanting them with coconut shells and to decrease the density of concrete which makes concrete for simple dealing.  


Author(s):  
A. Chernil'nik ◽  
D. El'shaeva ◽  
Y. Zherebtsov ◽  
N. Dotsenko ◽  
M. Samofalova

In conditions of dense urban development and a variety of engineering and geological conditions, the use of concretes with a combined aggregate of a rationally selected composition will solve the existing problem of reducing the mass of reinforced concrete structures of buildings and structures and maintaining the required strength and deformability. In this paper, studies have been carried out on the choice of a rational formulation of lightweight concrete based on expanded clay gravel, natural crushed stone and granulated blast furnace slag by varying the volume content of porous coarse aggregate and the volume content of fine aggregate in relation to the mixture. In total, 9 series of prototypes and 1 series of control samples are manufactured and tested. One series of samples includes three cubes with dimensions of 10x10x10 cm. All samples are tested in terms of density and compressive strength, the coefficient of constructive quality is determined. The results of the study shows that the introduction of expanded clay gravel into the composition of heavy concrete instead of part of the dense coarse aggregate and the replacement of the fine dense aggregate with granular blast furnace slag leads to an increase in the structural quality factor, that is, a decrease in the compressive strength of concrete is compensated for by an even more significant decrease in the density of the material, and means weight reduction. The increase in the coefficient of constructive quality of concrete based on expanded clay gravel, natural crushed stone and granulated blast-furnace slag in comparison with the control composition is 15.6 %.


2017 ◽  
Vol 902 ◽  
pp. 65-73 ◽  
Author(s):  
Elly Tjahjono ◽  
Ayudia M. Fani ◽  
Dodorus D. Dodi ◽  
Erinda P. Purnamasari ◽  
Feny A. Silaban ◽  
...  

The concrete technology has been growing significantly since years ago especially in Indonesia’s construction. Therefore, Indonesia needs new innovation of concrete technology to solve the problem for the availability of concrete material. Indonesia is known as the largest producer of crude palm oil (CPO) in the world. Oil palm shell (OPS) is one of the solid wastes produced in crude palm oil industry that can be used as concrete materials. This paper presents the experimental results of a research project to produce structural lightweight concrete using oil palm shell (OPS), as a coarse aggregate. This experimental was investigating the effects of adding silica fume, fly ash, and superplasticizer for the compressive strength and flexural strength of the OPS lightweight concrete. It was found that OPS lightweight concrete has compressive strength up to 23.90 MPa in 28-days and flexural strength up to 2.54 MPa in 28-days. This experimental concluded that OPS lightweight concrete has a good potential as a lightweight coarse aggregate and low-cost housing construction in Indonesia.


2013 ◽  
Vol 421 ◽  
pp. 390-394 ◽  
Author(s):  
Abdullah Mohd Mustafa Al Bakri ◽  
M.N. Norazian ◽  
M. Mohamed ◽  
H. Kamarudin ◽  
C.M. Ruzaidi ◽  
...  

This research focuses on a study of the strength of concrete with ceramic waste as coarse aggregate and quarry dust as fine aggregate. The sources of ceramic waste and quarry dust are obtained from the industrial in Malaysia. Presently, in ceramics industries the production goes as waste, which is not under going the recycle process yet. In this study an attempt has been made to find the suitability of the ceramic industrial wastes and quarry dust as a possible replacement for conventional crushed stone coarse and fine aggregate. Experiment were carried out to determine the strength of concrete with ceramic waste coarse aggregate and quarry dust fine aggregate to compare them with the conventional concrete made (with crushed stone coarse aggregate). From the results show that compressive strength of concrete with quarry dust as aggregates is the highest with 30.82 MPa with density 2251.85 kg/m3. This show, ceramic waste and quarry dust can be alternative aggregate for comparable properties.


Concrete is a Composite material which is composed of Cement, fine aggregate, coarse aggregate binded together with a definite proportion of water. Concrete is widely used in every single construction work around the world. Due to large scale construction activities using conventional coarse aggregate such as granite as a constructional material extreme reduction in the natural stone deposit has been encountered and is affecting the environment, hence causing ecology imbalance. In current situation of construction, price factor and the wide range of extraction and processing of materialsis matter of great concern for the people as well as environment. Therefore, introduction of alternate waste material in place of natural aggregate in concrete production not only protects environment but also make concrete a suitable, economical and environment friendly construction material. Different material like Coconut Shell and Fiber can also be used alternatively. In this project Coconut Shell and fiber are used as partial replacement for coarse aggregate as well as fine aggregate, respectively. To study characteristic properties of concrete 10% and 20% for coarse aggregate and 1%, and 2% for fine aggregate are replaced by its weight with coconut shell and fiber.


Sign in / Sign up

Export Citation Format

Share Document