scholarly journals Effect of the Short-Term Use of Fluoroquinolone and β-Lactam Antibiotics on Mouse Gut Microbiota

2020 ◽  
Vol Volume 13 ◽  
pp. 4547-4558
Author(s):  
Si-Lan Gu ◽  
Yiwen Gong ◽  
Jiaying Zhang ◽  
Yunbo Chen ◽  
Zhengjie Wu ◽  
...  
Lipids ◽  
2017 ◽  
Vol 52 (6) ◽  
pp. 499-511 ◽  
Author(s):  
Yue Shang ◽  
Ehsan Khafipour ◽  
Hooman Derakhshani ◽  
Lindsei K. Sarna ◽  
Connie W. Woo ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Travis T. Sims ◽  
Molly B. El Alam ◽  
Tatiana V. Karpinets ◽  
Stephanie Dorta-Estremera ◽  
Venkatesh L. Hegde ◽  
...  

AbstractDiversity of the gut microbiome is associated with higher response rates for cancer patients receiving immunotherapy but has not been investigated in patients receiving radiation therapy. Additionally, current studies investigating the gut microbiome and outcomes in cancer patients may not have adjusted for established risk factors. Here, we sought to determine if diversity and composition of the gut microbiome was independently associated with survival in cervical cancer patients receiving chemoradiation. Our study demonstrates that the diversity of gut microbiota is associated with a favorable response to chemoradiation. Additionally, compositional variation among patients correlated with short term and long-term survival. Short term survivor fecal samples were significantly enriched in Porphyromonas, Porphyromonadaceae, and Dialister, whereas long term survivor samples were significantly enriched in Escherichia Shigella, Enterobacteriaceae, and Enterobacteriales. Moreover, analysis of immune cells from cervical tumor brush samples by flow cytometry revealed that patients with a high microbiome diversity had increased tumor infiltration of CD4+ lymphocytes as well as activated subsets of CD4 cells expressing ki67+ and CD69+ over the course of radiation therapy. Modulation of the gut microbiota before chemoradiation might provide an alternative way to enhance treatment efficacy and improve treatment outcomes in cervical cancer patients.


2018 ◽  
Vol 6 (23) ◽  
pp. e13935 ◽  
Author(s):  
Hirokazu Taniguchi ◽  
Kumpei Tanisawa ◽  
Xiaomin Sun ◽  
Takafumi Kubo ◽  
Yuri Hoshino ◽  
...  

Nature ◽  
2016 ◽  
Vol 536 (7615) ◽  
pp. 238-238 ◽  
Author(s):  
Benoit Chassaing ◽  
Omry Koren ◽  
Julia K. Goodrich ◽  
Angela C. Poole ◽  
Shanthi Srinivasan ◽  
...  

2014 ◽  
Vol 45 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Hai-Ning Yu ◽  
Jing Zhu ◽  
Wen-sheng Pan ◽  
Sheng-Rong Shen ◽  
Wei-Guang Shan ◽  
...  

2020 ◽  
Vol 11 (5) ◽  
pp. 489-509
Author(s):  
R. Cheng ◽  
H. Liang ◽  
Y. Zhang ◽  
J. Guo ◽  
Z. Miao ◽  
...  

This study aimed to determine the impact of Lactobacillus plantarum PC170 concurrent with antibiotic treatment and/or during the recovery phase after antibiotic treatment on the body weight, faecal bacterial composition, short-chain fatty acids (SCFAs) concentration, and splenic cytokine mRNA expression of mice. Orally administrated ceftriaxone quantitatively and significantly decreased body weight, faecal total bacteria, Akkermansia muciniphila, and Lactobacillus plantarum, and faecal SCFAs concentration. Ceftriaxone treatment also dramatically altered the faecal microbiota with an increased Chao1 index, decreased species diversities and Bacteroidetes, and more Firmicutes and Proteobacteria. After ceftriaxone intervention, these changes all gradually started to recover. However, faecal microbiota diversities were still totally different from control by significantly increased α- and β-diversities. Bacteroidetes all flourished and became dominant during the recovery process. However, mice treated with PC170 both in parallel with and after ceftriaxone treatment encouraged more Bacteroidetes, Verrucomicrobia, and Actinobacteria, and the diversity by which to make faecal microbiota was very much closer to control. Furthermore, the expression of splenic pro-inflammatory cytokine tumour necrosis factor-α mRNA in mice supplemented with PC170 during the recovery phase was significantly lower than natural recovery. These results indicated that antibiotics, such as ceftriaxone, even with short-term intervention, could dramatically damage the structure of gut microbiota and their abilities to produce SCFAs with loss of body weight. Although such damages could be partly recovered with the cessation of antibiotics, the implication of antibiotics to gut microbiota might remain even after antibiotic treatment. The selected strain PC170 might be a potential probiotic because of its contributions in helping the host animal to remodel or stabilise its gut microbiome and enhancing the anti-inflammatory response as protection from the side effects of antibiotic therapy when it was administered in parallel with and after antibiotic treatment.


2016 ◽  
Vol 34 (3) ◽  
pp. 260-268 ◽  
Author(s):  
Kathleen Lange ◽  
Martin Buerger ◽  
Andreas Stallmach ◽  
Tony Bruns

The gut microbiota influences essential human functions including digestion, energy metabolism, and inflammation by modulating multiple endocrine, neural, and immune pathways of the host. Its composition and complexity varies markedly across individuals and across different sites of the gut, but provides a certain level of resilience against external perturbation. Short-term antibiotic treatment is able to shift the gut microbiota to long-term alternative dysbiotic states, which may promote the development and aggravation of disease. Common features of post-antibiotic dysbiosis include a loss of taxonomic and functional diversity combined with reduced colonization resistance against invading pathogens, which harbors the danger of antimicrobial resistance. This review summarizes the antibiotic-related changes of the gut microbiota and potential consequences in health and disease.


Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 3011 ◽  
Author(s):  
Raffaella Cancello ◽  
Silvia Turroni ◽  
Simone Rampelli ◽  
Stefania Cattaldo ◽  
Marco Candela ◽  
...  

Accumulating literature is providing evidence that the gut microbiota is involved in metabolic disorders, but the question of how to effectively modulate it to restore homeostasis, especially in the elderly, is still under debate. In this study, we profiled the intestinal microbiota of 20 elderly obese women (EO) at the baseline (T0), after 15 days of hypocaloric Mediterranean diet administered as part of a nutritional-metabolic rehabilitation program for obesity (T1), and after a further 15 days of the same diet supplemented with a probiotic mix (T2). Fecal samples were characterized by Illumina MiSeq sequencing of the 16S rRNA gene. The EO microbiota showed the typical alterations found in obesity, namely, an increase in potential pro-inflammatory components (i.e., Collinsella) and a decrease in health-promoting, short-chain fatty acid producers (i.e., Lachnospiraceae and Ruminococcaceae members), with a tendency to reduced biodiversity. After 15 days of the rehabilitation program, weight decreased by (2.7 ± 1.5)% and the gut microbiota dysbiosis was partially reversed, with a decline of Collinsella and an increase in leanness-related taxa. During the next 15 days of diet and probiotics, weight dropped further by (1.2 ± 1.1)%, markers of oxidative stress improved, and Akkermansia, a mucin degrader with beneficial effects on host metabolism, increased significantly. These findings support the relevant role of a correct dietetic approach, even in the short term, to modulate the EO gut microbiota towards a metabolic health-related configuration, counteracting the increased risk of morbidity in these patients.


Sign in / Sign up

Export Citation Format

Share Document