scholarly journals Forming 4-Methylcatechol as the Dominant Bioavailable Metabolite of Intraruminal Rutin Inhibits p-Cresol Production in Dairy Cows

Metabolites ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 16
Author(s):  
Yue Guo ◽  
Wanda J. Weber ◽  
Dan Yao ◽  
Luciano Caixeta ◽  
Noah P. Zimmerman ◽  
...  

Rutin, a natural flavonol glycoside, elicits its diverse health-promoting effects from the bioactivities of quercetin, its aglycone. While widely distributed in the vegetables and fruits of human diet, rutin is either absent or inadequate in common animal feed ingredients. Rutin has been supplemented to dairy cows for performance enhancement, but its metabolic fate in vivo has not been determined. In this study, plasma, urine, and rumen fluid samples were collected before and after the intraruminal dosing of 100 mg/kg rutin to 4 Holsteins, and then characterized by both targeted and untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomic analysis. In plasma and urine, 4-methylcatechol sulfate was identified as the most abundant metabolite of rutin, instead of quercetin and its flavonol metabolites, and its concentration was inversely correlated with the concentration of p-cresol sulfate. In rumen fluid, the formation of 3,4-dihydroxyphenylacetic acid (DHPAA) and 4-methylcatechol after rapid degradation of rutin and quercetin concurred with the decrease of p-cresol and the increase of its precursor, 4-hydroxyphenylacetic acid. Overall, the formation of 4-methylcatechol, a bioactive microbial metabolite, as the dominant bioavailable metabolite of rutin and quercetin, could contribute to their beneficial bioactivities in dairy cows, while the decrease of p-cresol, a microbial metabolite with negative biological and sensory properties, from the competitive inhibition between microbial metabolism of rutin and tyrosine, has the potential to reduce environmental impact of dairy operations and improve the health of dairy cattle.

Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 84
Author(s):  
Christiane Gruber-Dorninger ◽  
Johannes Faas ◽  
Barbara Doupovec ◽  
Markus Aleschko ◽  
Christian Stoiber ◽  
...  

The mycotoxin zearalenone (ZEN) is a frequent contaminant of animal feed and is well known for its estrogenic effects in animals. Cattle are considered less sensitive to ZEN than pigs. However, ZEN has previously been shown to be converted to the highly estrogenic metabolite α-zearalenol (α-ZEL) in rumen fluid in vitro. Here, we investigate the metabolism of ZEN in the reticulorumen of dairy cows. To this end, rumen-fistulated non-lactating Holstein Friesian cows (n = 4) received a one-time oral dose of ZEN (5 mg ZEN in 500 g concentrate feed) and the concentrations of ZEN and ZEN metabolites were measured in free rumen liquid from three reticulorumen locations (reticulum, ventral sac and dorsal mat layer) during a 34-h period. In all three locations, α-ZEL was the predominant ZEN metabolite and β-zearalenol (β-ZEL) was detected in lower concentrations. ZEN, α-ZEL and β-ZEL were eliminated from the ventral sac and reticulum within 34 h, yet low concentrations of ZEN and α-ZEL were still detected in the dorsal mat 34 h after ZEN administration. In a second step, we investigated the efficacy of the enzyme zearalenone hydrolase ZenA (EC 3.1.1.-, commercial name ZENzyme®, BIOMIN Holding GmbH, Getzersdorf, Austria) to degrade ZEN to the non-estrogenic metabolite hydrolyzed zearalenone (HZEN) in the reticulorumen in vitro and in vivo. ZenA showed a high ZEN-degrading activity in rumen fluid in vitro. When ZenA was added to ZEN-contaminated concentrate fed to rumen-fistulated cows (n = 4), concentrations of ZEN, α-ZEL and β-ZEL were significantly reduced in all three reticulorumen compartments compared to administration of ZEN-contaminated concentrate without ZenA. Upon ZenA administration, degradation products HZEN and decarboxylated HZEN were detected in the reticulorumen. In conclusion, endogenous metabolization of ZEN in the reticulorumen increases its estrogenic potency due to the formation of α-ZEL. Our results suggest that application of zearalenone hydrolase ZenA as a feed additive may be a promising strategy to counteract estrogenic effects of ZEN in cattle.


2018 ◽  
Vol 102 (4) ◽  
pp. 843-852 ◽  
Author(s):  
F. M. Macome ◽  
W. F. Pellikaan ◽  
W. H. Hendriks ◽  
D. Warner ◽  
J. T. Schonewille ◽  
...  

1996 ◽  
Vol 1996 ◽  
pp. 92-92
Author(s):  
G. O'Donnell ◽  
D. O'Callaghan ◽  
M.P. Boland

Trace mineral supplementation of feed rations is commonly achieved by the addition of simple inorganic salts. The bioavailability and hence the performance enhancement achieved by trace mineral supplementation is significantly improved if the metal is added in the form of a peptide complex or chelate. Extracts from the Yucca shidigera plant bind ammonia in-vivo and thus may alter rumen fermentation and in turn milk synthesis. The aim was to determine the effects of a supplement (All-Plex, Alltech Ireland) included at 10g/day, on milk yield, milk composition, somatic cell counts (SCC), reproduction parameters and blood copper, zinc selenium and haemoglobin. The supplement contained proteinated minerals (100mg copper, 300mg zinc, 300mg manganese, 2mg selenium) and a yucca extract (1g Dc-Odorase, Alltech Ireland).


2022 ◽  
Vol 2 (1) ◽  
pp. 53-72
Author(s):  
Teemu Rinttilä ◽  
Colm A. Moran ◽  
Juha Apajalahti

We first sought to evaluate the effect of dietary supplementation with the docosahexaenoic acid (DHA)-rich microalgae, Aurantiochytrium limacinum (AURA), on rumen fermentation and the resistance of DHA to degradation and biohydrogenation by rumen microbes through ex vivo fermentation experiments. Subsequently, we sought to quantify the diet-derived DHA content of milk and the impact of AURA on microbial composition and metabolism in a pilot feeding trial with rumen-cannulated dairy cows. To achieve our aims, rumen fluid from cannulated cows was used as inoculum, and the effect of AURA inclusion on fermentation ex vivo was examined. At doses corresponding to the amount of AURA recommended for commercial production animals, only ~10% of DHA was degraded or biohydrogenated by rumen microorganisms. The results show that feeding with AURA had no effect on either total bacterial density or short-chain fatty acid production. Real-time quantitative PCR analysis of the rumen fluid samples collected during a seven-week in vivo trial revealed that microbes related to lactic acid metabolism and methanogenesis were significantly suppressed by the AURA-supplemented diet. The DHA concentration in milk increased over 25-fold with the AURA-supplemented diet and dropped by 30–40% within one week of washout. The addition of A. limacinum biomass to dairy cow diets resulted in positive effects on rumen microbial composition with no adverse effect on fermentation activity. AURA-derived DHA was stable, with only modest degradation in the rumen, and was successfully deposited in milk. This is the first study to investigate the effect of supplementing the diet of dairy cows with a protist-based biomass, namely, on important rumen fermentation parameters and on DHA deposition in milk, using a combination of ex vivo and in vivo approaches.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3112
Author(s):  
Edward H. Cabezas-Garcia ◽  
Rebecca Danielsson ◽  
Mohammad Ramin ◽  
Pekka Huhtanen

This study evaluated if ranking dairy cows as low and high CH4 emitters using the GreenFeed system (GF) can be replicated in in vitro conditions using an automated gas system and its possible implications in terms of fermentation balance. Seven pairs of low and high emitters fed the same diet were selected on the basis of residual CH4 production, and rumen fluid taken from each pair incubated separately in the in vitro gas production system. In total, seven in vitro incubations were performed with inoculums taken from low and high CH4 emitting cows incubated in two substrates differing in forage-to-concentrate proportion, each without or with the addition of cashew nutshell liquid (CNSL) as an inhibitor of CH4 production. Except for the aimed differences in CH4 production, no statistical differences were detected among groups of low and high emitters either in in vivo animal performance or rumen fermentation profile prior to the in vitro incubations. The effect of in vivo ranking was poorly replicated in in vitro conditions after 48 h of anaerobic fermentation. Instead, the effects of diet and CNSL were more consistent. The inclusion of 50% barley in the diet (SB) increased both asymptotic gas production by 17.3% and predicted in vivo CH4 by 26.2%, when compared to 100% grass silage (S) substrate, respectively. The SB diet produced on average more propionate (+28 mmol/mol) and consequently less acetate compared to the S diet. Irrespective of CH4 emitter group, CNSL decreased predicted in vivo CH4 (26.7 vs. 11.1 mL/ g of dry matter; DM) and stoichiometric CH4 (CH4VFA; 304 vs. 235 moles/mol VFA), with these being also reflected in decreased total gas production per unit of volatile fatty acids (VFA). Microbial structure was assessed on rumen fluid sampled prior to in vitro incubation, by sequencing of the V4 region of 16S rRNA gene. Principal coordinate analysis (PCoA) on operational taxonomic unit (OTU) did not show any differences between groups. Some differences appeared of relative abundance between groups in some specific OTUs mainly related to Prevotella. Genus Methanobrevibacter represented 93.7 ± 3.33% of the archaeal sequences. There were no clear differences between groups in relative abundance of Methanobrevibacter.


1996 ◽  
Vol 1996 ◽  
pp. 92-92
Author(s):  
G. O'Donnell ◽  
D. O'Callaghan ◽  
M.P. Boland

Trace mineral supplementation of feed rations is commonly achieved by the addition of simple inorganic salts. The bioavailability and hence the performance enhancement achieved by trace mineral supplementation is significantly improved if the metal is added in the form of a peptide complex or chelate. Extracts from the Yucca shidigera plant bind ammonia in-vivo and thus may alter rumen fermentation and in turn milk synthesis. The aim was to determine the effects of a supplement (All-Plex, Alltech Ireland) included at 10g/day, on milk yield, milk composition, somatic cell counts (SCC), reproduction parameters and blood copper, zinc selenium and haemoglobin. The supplement contained proteinated minerals (100mg copper, 300mg zinc, 300mg manganese, 2mg selenium) and a yucca extract (1g Dc-Odorase, Alltech Ireland).


1965 ◽  
Vol 43 (7) ◽  
pp. 909-914 ◽  
Author(s):  
J. H. Fellman ◽  
Esther S. Roth

This report deals with an in vitro study of the competitive inhibition of monoamine oxidase by aromatic amines which are substrates for the enzyme. The metabolism of normetanephrine by mitochondrial monoamine oxidase was demonstrated to be competitively inhibited by 5-hydroxytryptamine, and in a similar fashion the oxidation of 5-hydroxytryptamine was shown to be inhibited by normetanephrine. An in vivo demonstration of this effect was contrived as a model of the carcinoid syndrome, and the pattern of the urinary metabolites was examined in rats before and after the intraperitoneal injection of 5-hydroxytryptamine. The data reveal a distortion in pattern of the urinary metabolites of the catecholamines consistent with the idea of an in vivo inhibition of monoamine oxidase by the appearance of a massive amount of 5-hydroxytryptamine. Evidence from a patient afflicted with carcinoid which suggests that this phenomenon operates in this clinical condition and that it may also account for the epinephrine triggering of the flushing syndrome is presented.


animal ◽  
2017 ◽  
Vol 11 (4) ◽  
pp. 591-599 ◽  
Author(s):  
G. Klop ◽  
S van Laar-van Schuppen ◽  
W.F. Pellikaan ◽  
W.H. Hendriks ◽  
A. Bannink ◽  
...  

1994 ◽  
Vol 71 (04) ◽  
pp. 499-506 ◽  
Author(s):  
Mark W C Hatton ◽  
Bonnie Ross-Ouellet

SummaryThe behavior of 125I-labeled recombinant hirudin towards the uninjured and de-endothelialized rabbit aorta wall has been studied in vitro and in vivo to determine its usefulness as an indicator of thrombin activity associated with the aorta wall. Thrombin adsorbed to either sulfopropyl-Sephadex or heparin-Sepharose bound >95% of 125I-r-hirudin and the complex remained bound to the matrix. Binding of 125I-r-hirudin to the exposed aorta subendothelium (intima-media) in vitro was increased substantially if the tissue was pre-treated with thrombin; the quantity of l25I-r-hirudin bound to the de-endothelialized intima-media (i.e. balloon-injured in vitro) correlated positively with the quantity of bound 131I-thrombin (p <0.01). Aortas balloon-injured in vivo were measured for thrombin release from, and binding of 125I-r-hirudin to, the de-endothelialized intimal surface in vitro; 125I-r-hirudin binding correlated with the amount of active thrombin released (p <0.001). Uptake of 125I-r-hirudin by the aorta wall in vivo was proportional to the uptake of 131I-fibrinogen (as an indicator of thrombin activity) before and after balloon injury. After 30 min in the circulation, specific 125I-r-hirudin binding to the uninjured and de-endo- thelialized (at 1.5 h after injury) aorta wall was equivalent to 3.4 (± 2.5) and 25.6 (±18.1) fmol of thrombin/cm2 of intima-media, respectively. Possibly, only hirudin-accessible, glycosaminoglycan-bound thrombin is measured in this way.


1997 ◽  
Vol 78 (04) ◽  
pp. 1202-1208 ◽  
Author(s):  
Marianne Kjalke ◽  
Julie A Oliver ◽  
Dougald M Monroe ◽  
Maureane Hoffman ◽  
Mirella Ezban ◽  
...  

SummaryActive site-inactivated factor VIIa has potential as an antithrombotic agent. The effects of D-Phe-L-Phe-L-Arg-chloromethyl ketone-treated factor VIla (FFR-FVIIa) were evaluated in a cell-based system mimicking in vivo initiation of coagulation. FFR-FVIIa inhibited platelet activation (as measured by expression of P-selectin) and subsequent large-scale thrombin generation in a dose-dependent manner with IC50 values of 1.4 ± 0.8 nM (n = 8) and 0.9 ± 0.7 nM (n = 7), respectively. Kd for factor VIIa binding to monocytes ki for FFR-FVIIa competing with factor VIIa were similar (11.4 ± 0.8 pM and 10.6 ± 1.1 pM, respectively), showing that FFR-FVIIa binds to tissue factor in the tenase complex with the same affinity as factor VIIa. Using platelets from volunteers before and after ingestion of aspirin (1.3 g), there were no significant differences in the IC50 values of FFR-FVIIa [after aspirin ingestion, the IC50 values were 1.7 ± 0.9 nM (n = 8) for P-selectin expression, p = 0.37, and 1.4 ± 1.3 nM (n = 7) for thrombin generation, p = 0.38]. This shows that aspirin treatment of platelets does not influence the inhibition of tissue factor-initiated coagulation by FFR-FVIIa, probably because thrombin activation of platelets is not entirely dependent upon expression of thromboxane A2.


Sign in / Sign up

Export Citation Format

Share Document