scholarly journals Микроволновая диагностика разрядов в искусственном облаке заряженных водяных капель

2022 ◽  
Vol 92 (3) ◽  
pp. 386
Author(s):  
Н.А. Богатов ◽  
В.С. Сысоев ◽  
Д.И. Сухаревский ◽  
М.Ю. Наумова

The microwave diagnostics of discharges occurring in an artificial cloud of charged water droplets created in an open air simulating the environment of thunderclouds is implemented. An artificial cloud with a droplet size of about 1 microns is opaque in the visible range, so intra-cloud discharges are not available for investigation by traditional methods in the spark discharge physics based on the registration of visible discharge radiation. Microwaves pass through such a cloud without noticeable attenuation, they interact only with the plasma of discharges occurring in the cloud. The probing microwave radiation had a wavelength of 8 mm. The attenuation of microwaves passed through the cloud was measured with temporary resolution of about 10 ns. The temporal characteristics of intra-cloud discharges were investigated.

2010 ◽  
Vol 3 (4) ◽  
pp. 3133-3177 ◽  
Author(s):  
S. Lance ◽  
C. A. Brock ◽  
D. Rogers ◽  
J. A. Gordon

Abstract. Laboratory calibrations of the Cloud Droplet Probe (CDP) sample area and droplet sizing are performed using water droplets of known size, generated at a known rate. However, comparison with an independent measure of liquid water content (LWC) during in-flight operation suggests much greater biases in the droplet size and/or droplet concentration measured by the CDP than would be expected based on the laboratory calibrations. Since the bias in CDP-LWC is strongly concentration dependent, we hypothesize that this discrepancy is a result of coincidence, when two or more droplets pass through the CDP laser beam within a very short time. The coincidence error, most frequently resulting from the passage of one droplet outside and one inside the instrument sample area at the same time, is evaluated in terms of an "extended sample area" (SAE), the area in which individual droplets can affect the sizing detector without necessarily registering on the qualifier. The SAE is calibrated with standardized water droplets, and used in a Monte-Carlo simulation to estimate the effect of coincidence on the measured droplet size distributions. The simulations show that extended coincidence errors are important for the CDP at droplet concentrations even as low as 200 cm−3, and these errors are necessary to explain the trend between calculated and measured LWC observed in liquid and mixed-phase clouds during the Aerosol, Radiation and Cloud Processes Affecting Arctic Climate (ARCPAC) study. We estimate from the simulations that 60% oversizing error and 50% undercounting error can occur at droplet concentrations exceeding 500 cm−3. Modification of the optical design of the CDP is currently being explored in an effort to reduce this coincidence bias.


2005 ◽  
Vol 50 (7) ◽  
pp. 868-875 ◽  
Author(s):  
A. G. Temnikov ◽  
A. V. Orlov ◽  
V. N. Bolotov ◽  
Yu. V. Tkach

1993 ◽  
Vol 7 (4) ◽  
pp. 799-807 ◽  
Author(s):  
James E. Hanks ◽  
Chester G. McWhorter

Spray droplet size of water and paraffinic oil was affected by air pressure, nozzle type, and liquid flow rate when applied with an ultralow volume (ULV), air-assist sprayer. Volume median diameters of water were generally larger than oil at constant air pressure and liquid flow rate. Droplet size decreased as air pressure increased, but increased as liquid flow rate increased. Volume median diameters of water droplets ranged from 41 to 838μm and from 16 to 457μm with oil when atomized at air pressures ranging from 14 to 84 kPa. Relative spans ranged from 1.2 to 18.0 and 2.0 to 7.2 for water and oil, respectively.


2016 ◽  
Vol 121 (16) ◽  
pp. 9756-9766 ◽  
Author(s):  
A. Yu. Kostinskiy ◽  
V. S. Syssoev ◽  
N. A. Bogatov ◽  
E. A. Mareev ◽  
M. G. Andreev ◽  
...  

2010 ◽  
Vol 3 (6) ◽  
pp. 1683-1706 ◽  
Author(s):  
S. Lance ◽  
C. A. Brock ◽  
D. Rogers ◽  
J. A. Gordon

Abstract. Laboratory calibrations of the Cloud Droplet Probe (CDP) sample area and droplet sizing are performed using water droplets of known size, generated at a known rate. Although calibrations with PSL and glass beads were consistent with theoretical instrument response, liquid water droplet calibrations were not, and necessitated a 2 μm shift in the manufacturer's calibration. We show that much of this response shift may be attributable to a misalignment of the optics relative to the axis of the laser beam. Comparison with an independent measure of liquid water content (LWC) during in-flight operation suggests much greater biases in the droplet size and/or droplet concentration measured by the CDP than would be expected based on the laboratory calibrations. Since the bias in CDP-LWC is strongly concentration dependent, we hypothesize that this discrepancy is a result of coincidence, when two or more droplets pass through the CDP laser beam within a very short time. The coincidence error, most frequently resulting from the passage of one droplet outside and one inside the instrument sample area at the same time, is evaluated in terms of an "extended sample area" (SAE), the area in which individual droplets can affect the sizing detector without necessarily registering on the qualifier. SAE is calibrated with standardized water droplets, and used in a Monte-Carlo simulation to estimate the effect of coincidence on the measured droplet size distributions. The simulations show that extended coincidence errors are important for the CDP at droplet concentrations even as low as 200 cm−3, and these errors are necessary to explain the trend between calculated and measured LWC observed in liquid and mixed-phase clouds during the Aerosol, Radiation and Cloud Processes Affecting Arctic Climate (ARCPAC) study. We estimate from the simulations that 60% oversizing error and 50% undercounting error can occur at droplet concentrations exceeding 400 cm−3. Modification of the optical design of the CDP is currently being explored in an effort to reduce this coincidence bias.


Sign in / Sign up

Export Citation Format

Share Document