Gabab Receptors: Are They Missing In Action In Focal Epilepsy Research?

2021 ◽  
Vol 19 ◽  
Author(s):  
Massimo Avoli ◽  
Maxime Lévesque

: GABA, the key inhibitory neurotransmitter in the adult forebrain, activates pre- and postsynaptic receptors that have been categorized as GABAA, which directly open ligand-gated (or receptor-operated) ion-channels, and GABAB, which are metabotropic since they operate through second messengers. Over the last three decades, several studies have addressed the role of GABAB receptors in the pathophysiology of generalized and focal epileptic disorders. Here, we will address their involvement in focal epileptic disorders by mainly reviewing in vitro studies that have shown: (i) how either enhancing or decreasing GABAB receptor function can favour epileptiform synchronization and thus ictogenesis, although with different features; (ii) the surprising ability of GABAB receptor antagonism to disclose ictal-like activity when excitatory ionotropic transmission is abolished; and (iii) their contribution to control seizure-like discharges during repetitive electrical stimuli delivered in limbic structures. In spite of this evidence, the role of GABAB receptor function in focal epileptic disorders has been attracting less interest when compared to the numerous studies that have addressed GABAA receptor signaling. Therefore, a main aim of our mini-review is to revive interest in the function of GABAB receptors in focal epilepsy research.

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Olga Ostrovskaya ◽  
Keqiang Xie ◽  
Ikuo Masuho ◽  
Ana Fajardo-Serrano ◽  
Rafael Lujan ◽  
...  

In the hippocampus, the inhibitory neurotransmitter GABA shapes the activity of the output pyramidal neurons and plays important role in cognition. Most of its inhibitory effects are mediated by signaling from GABAB receptor to the G protein-gated Inwardly-rectifying K+ (GIRK) channels. Here, we show that RGS7, in cooperation with its binding partner R7BP, regulates GABABR-GIRK signaling in hippocampal pyramidal neurons. Deletion of RGS7 in mice dramatically sensitizes GIRK responses to GABAB receptor stimulation and markedly slows channel deactivation kinetics. Enhanced activity of this signaling pathway leads to decreased neuronal excitability and selective disruption of inhibitory forms of synaptic plasticity. As a result, mice lacking RGS7 exhibit deficits in learning and memory. We further report that RGS7 is selectively modulated by its membrane anchoring subunit R7BP, which sets the dynamic range of GIRK responses. Together, these results demonstrate a novel role of RGS7 in hippocampal synaptic plasticity and memory formation.


2008 ◽  
pp. S111-S120
Author(s):  
P Mareš ◽  
H Kubová

Epileptic afterdischarges (ADs) elicited by electrical stimulation of sensorimotor cortical area were used as a model to study the role of neurotransmitter systems in cortical seizures in three age groups of developing rats. Drugs augmenting inhibition mediated by GABAA receptors were found to suppress ADs in all age groups, their activity was usually more marked in younger than in 25-day-old rat pups. Drugs potentiating GABAB receptors exhibit lower efficacy and more complicated developmental profile than GABAA-ergic drugs. Effects of an antagonist of GABAB receptor--marked prolongation of ADs in all three age groups--suggest an important role of GABAB receptors in arrest of cortical seizures. Drugs affecting glutamate receptors exhibit variable effects, usually better expressed in older animals than in 12-day-old ones. No specific role for ionotropic as well as metabotropic glutamate receptors could be predicted. Activation of adenosinergic inhibitory modulatory system also exhibited anticonvulsant action in the present model. All three neurotransmitter systems probably participate in mechanisms of generation, maintenance and arrest of cortical seizures.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 394-394
Author(s):  
Lurong Lian ◽  
Yanfeng Wang ◽  
Xinsheng Chen ◽  
Tami Bach ◽  
Laurie Lenox ◽  
...  

Abstract Pleckstrin is a 40 kDa phosphoprotein containing amino- and carboxyl-terminal Pleckstrin Homology (PH) domains separated by a DEP domain. Pleckstrin’s expression is restricted to platelets and leukocytes, and represents approximately 1% of total cellular protein within these cells. Following platelet and leukocyte activation, PKC rapidly phosphorylates pleckstrin inducing it to bind membrane bound phospholipids such as phosphatidylinositol 4,5 bisphosphate (PIP2). Heterologously expressed phosphorylated pleckstrin colocalized with integrins and induces cytoskeletal reorganization. To better define the role of pleckstrin in vivo, we introduced a loss-of-function mutation into the murine pleckstrin gene. Pleckstrin-null mice were present in offspring at a frequency consistent with a Mendelian inheritance pattern. Adult pleckstrin −/− mice had 32% lower platelet counts than their littermates, but exhibited no spontaneous hemorrhage. Given the role of PKC and phospholipid second messengers on cytoskeletal dynamics, and our observations of pleckstrin overexpression in cell lines, we analyzed whether loss of pleckstrin affected cell spreading. Pleckstrin −/− platelets spread extremely poorly upon immobilized fibrinogen, and rarely exhibited broad membrane extensions. Granulocytes from pleckstrin −/− mice also have a spreading defect, as well as impaired ability to generate reactive oxygen species in the response to TNFα. Knockout B-cells, CD4-T-cells, and CD8-T-cells all migrated approximately 30% as efficiently as wild type cells in response to a gradient of SDF-1α in a transwell assay. These data suggest that loss of pleckstrin causes cytoskeletal defects in cells of multiple hematopoietic lineages. Analyzing whether this caused a functional defect, we found that pleckstrin −/− platelets exhibited a 22% dense- and 24% alpha-granule exocytosis defect, and a 35% defect in thrombin-induced calcium entry. In spite of these abnormalities, platelets changed shape and aggregated normally after stimulation with thrombin, ADP, or collagen in vitro. Pleckstrin knockout platelets did have a markedly impaired aggregation response following exposure to the PKC stimulant, PMA. This suggested that pleckstrin is a critical effector for PKC-mediated aggregation, but another pathway is able to compensate for this loss of pleckstrin following agonist stimulation. We reasoned that the alternative pathway might also utilize PIP2-dependent second messengers. Since the phosphorylation of PIP2 by PI3K generates second messengers that also contribute to platelet aggregation, we tested whether PI3K compensated for the loss of pleckstrin. We found that the PI3K inhibitor, LY294002 profoundly impaired the aggregation of pleckstrin knockout platelets in response to stimulation of the thrombin receptor. In contrast, the PI3K inhibitor minimally affected wild type platelets. This demonstrates that second messengers generated by PI3K are able to compensate for loss of pleckstrin. This also demonstrates that thrombin-induced platelet aggregation can be mediated by one of two parallel pathways, one involving PKC and pleckstrin, and the other involving PI3K. Together, our results show that pleckstrin is an essential component of PKC-mediated platelet activation and signals directed to the cytoskeleton.


2005 ◽  
Vol 388 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Josée-France VILLEMURE ◽  
Lynda ADAM ◽  
Nicola J. BEVAN ◽  
Katy GEARING ◽  
Sébastien CHÉNIER ◽  
...  

GBRs (GABAB receptors; where GABA stands for γ-aminobutyric acid) are G-protein-coupled receptors that mediate slow synaptic inhibition in the brain and spinal cord. In vitro assays have previously demonstrated that these receptors are heterodimers assembled from two homologous subunits, GBR1 and GBR2, neither of which is capable of producing functional GBR on their own. We have used co-immunoprecipitation in combination with bioluminescence and fluorescence resonance energy transfer approaches in living cells to assess directly the interaction between GBR subunits and determine their subcellular localization. The results show that, in addition to forming heterodimers, GBR1 and GBR2 can associate as stable homodimers. Confocal microscopy indicates that, while GBR1/GBR1 homodimers are retained in the endoplasmic reticulum and endoplasmic reticulum–Golgi intermediate compartment, both GBR2/GBR2 homodimers and GBR1/GBR2 heterodimers are present at the plasma membrane. Although these observations shed new light on the assembly of GBR complexes, they raise questions about the potential functional roles of GBR1 and GBR2 homodimers.


Endocrinology ◽  
2012 ◽  
Vol 153 (8) ◽  
pp. 3758-3769 ◽  
Author(s):  
Stephanie Constantin ◽  
Richard Piet ◽  
Karl Iremonger ◽  
Shel Hwa Yeo ◽  
Jenny Clarkson ◽  
...  

The GnRH neurons exhibit long dendrites and project to the median eminence. The aim of the present study was to generate an acute brain slice preparation that enabled recordings to be undertaken from GnRH neurons maintaining the full extent of their dendrites or axons. A thick, horizontal brain slice was developed, in which it was possible to record from the horizontally oriented GnRH neurons located in the anterior hypothalamic area (AHA). In vivo studies showed that the majority of AHA GnRH neurons projected outside the blood-brain barrier and expressed c-Fos at the time of the GnRH surge. On-cell recordings compared AHA GnRH neurons in the horizontal slice (AHAh) with AHA and preoptic area (POA) GnRH neurons in coronal slices [POA coronal (POAc) and AHA coronal (AHAc), respectively]. AHAh GnRH neurons exhibited tighter burst firing compared with other slice orientations. Although α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) excited GnRH neurons in all preparations, γ-aminobutyric acid (GABA) was excitatory in AHAc and POAc but inhibitory in AHAh slices. GABAA receptor postsynaptic currents were the same in AHAh and AHAc slices. Intriguingly, direct activation of GABAA or GABAB receptors respectively stimulated and inhibited GnRH neurons regardless of slice orientation. Subsequent experiments indicated that net GABA effects were determined by differences in the ratio of GABAA and GABAB receptor-mediated effects in “long” and “short” dendrites of GnRH neurons in the different slice orientations. These studies document a new brain slice preparation for recording from GnRH neurons with their extensive dendrites/axons and highlight the importance of GnRH neuron orientation relative to the angle of brain slicing in studying these neurons in vitro.


1996 ◽  
Vol 76 (2) ◽  
pp. 1166-1179 ◽  
Author(s):  
S. B. Kombian ◽  
J. A. Zidichouski ◽  
Q. J. Pittman

1. The effect of gamma-aminobutyric acid-B (GABAB)-receptor activation on excitatory synaptic transmission in the rat supraoptic nucleus (SON) was examined using the nystatin perforated-patch whole cell recording technique in coronal hypothalamic slices. 2. Stimulation of the hypothalamic region dorso-medial to the SON elicited glutamate and GABAA-receptor-mediated synaptic responses in electrophysiologically identified magnocellular neurosecretory cells. 3. Bath application of the GABAB-receptor agonist, +/- -baclofen reversibly reduced pharmacologically isolated, glutamate-mediated excitatory postsynaptic currents (EPSCs) in a concentration-dependent manner. At the concentrations used, baclofen altered neither the postsynaptic conductances of these cells nor their response to bath applied alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). 4. The baclofen-induced synaptic depression was accompanied by an increase in paired pulse facilitation (PPF). This increase in PPF, as well as the synaptic depression, was blocked by the GABAB-receptor antagonists CGP36742 and saclofen. 5. In addition to blocking the actions of baclofen in this nucleus, CGP36742 caused an increase in the evoked EPSC amplitude without altering postsynaptic cell conductances or responses induced by bath-applied AMPA. Contrary to the action of CGP36742, saclofen caused a baclofen-like depression of the evoked EPSC, suggesting that it may act as a partial GABAB receptor agonist. 6. These results indicate that the activation of presynaptic GABAB receptors reduces fast excitatory synaptic transmission in the SON. They further suggest that presynaptic GABAB receptors may be tonically activated in vitro. Thus GABAB receptors may influence the level of activity and excitation of SON neurons and hence modulate the secretion of the regulatory neuropeptides vasopressin and oxytocin.


1996 ◽  
Vol 271 (5) ◽  
pp. R1304-R1310 ◽  
Author(s):  
Y. W. Li ◽  
P. G. Guyenet

In anesthetized rats, iontophoresis of the gamma-aminobutyric acid (GABAB)-receptor agonist and antispastic drug baclofen inhibits the bulbospinal vasomotor neurons of the rostral ventrolateral medulla (RVLM). The present study was carried out to determine whether C1 adrenergic and other bulbospinal neurons of the RVLM have postsynaptic GABAB receptors. Retrogradely labeled RVLM bulbospinal neurons (n = 52) were recorded in 120-micron-thick slices from neonatal rat brain (3-10 days old). Most neurons (48/52) were tonically active (3 +/- 0.6 spikes/s). Twenty-six neurons were recovered histologically, and 18 of them were immunoreactive for tyrosine hydroxylase (TH). In current clamp, baclofen (0.3-10 microM) hyperpolarized RVLM bulbospinal cells in a dose-dependent manner (16 +/- 0.5 mV hyperpolarization by 3 microM baclofen; n = 19) and decreased input resistance by 40% (n = 10). In voltage clamp (1 microM tetrodotoxin present; holding potential: -40 to -60 mV), 3 microM baclofen induced an outward current of 21 +/- 2 pA (n = 29). This current exhibited inward rectification and reversed polarity close to the K+ equilibrium potential (external K+ from 2.5 to 10 mM). The current induced by baclofen was reduced 90% by 0.1-0.2 mM BaCl2 (n = 6) and was blocked reversibly by the selective GABAB-receptor antagonist CGP-55845A (0.5-1 microM; n = 6). All histologically verified TH-immunoreactive cells (n = 18) were sensitive to baclofen. In summary, RVLM bulbospinal neurons including C1 adrenergic cells possess GABAB receptors. Activation of these receptors increases an inwardly rectifying K+ conductance. This effect reduces the intrinsic firing frequency of RVLM vasomotor neurons "in vitro" and may contribute to the sympatholytic action of baclofen "in vivo."


1995 ◽  
Vol 268 (2) ◽  
pp. R428-R437 ◽  
Author(s):  
Y. W. Li ◽  
P. G. Guyenet

We recorded the effects of the gamma-aminobutyric acid class B (GABAB) receptor agonist baclofen on neuronal activity in the rat rostral ventrolateral medulla (RVLM) in tissue slices and in vivo. In vitro, baclofen (3 microM) produced hyperpolarization (13 of 17), decrease in input resistance (12 of 16), and reduction of spontaneous synaptic activity (7 of 14). Baclofen inhibited 84 of 87 spontaneously active neurons recorded extracellularly in vitro. Inhibition was concentration dependent (0.1-3 microM, maximum inhibition: 94 +/- 4%, n = 16) and persisted in low-Ca2+/high-Mg2+ medium (n = 19). The GABAB receptor antagonists CGP-54626A (1 microM, n = 19), CGP-55845A (1 microM, n = 15), and 2-hydroxysaclofen (0.5 mM, n = 3) attenuated inhibition by baclofen (1-3 microM) but not by muscimol or GABA. In vivo, iontophoresis of baclofen inhibited 31 of 32 RVLM neurons, including bulbospinal barosensitive (15 of 16) and respiratory ones (7 of 7). CGP-55845A attenuated baclofen inhibition (6 of 9). Bicuculline attenuated the effect of GABA but not that of baclofen (4 of 4). In summary, RVLM presympathetic neurons have somatodendritic GABAB receptors that may contribute to baclofen-induced hypotension in humans.


1992 ◽  
Vol 262 (1) ◽  
pp. G107-G112 ◽  
Author(s):  
S. Rattan ◽  
S. Chakder

The studies were performed in in vitro to examine the role of nitric oxide (NO) in nonadrenergic noncholinergic (NANC) nerve-mediated relaxation of the internal anal sphincter (IAS) smooth muscle strips of opossums. NO caused a concentration-dependent fall in the resting tension of the IAS. The inhibitory action of NO may be exerted directly on the IAS smooth muscle since it was not modified by the neurotoxin tetrodotoxin (1 x 10(-6) M), which abolished the neurally mediated fall in the IAS tension. The inhibitor of NO synthesis NG-nitro-L-arginine (L-NNA) produced concentration-dependent suppression of the neurally mediated fall in the IAS tension. The suppression of the neurally mediated IAS relaxation was stereoselective because D-NNA had no effect on the control responses. The suppressant action of L-NNA was selectively reversed by L-arginine in a concentration-dependent manner. The reversal was complete with 3 x 10(-4) M L-arginine. D-Arginine on the other hand, at the same concentration had no effect on L-NNA-suppressed IAS relaxation. Interestingly, the fall in the IAS tension caused by vasoactive intestinal polypeptide (VIP) (an inhibitory neurotransmitter in the IAS) was also inhibited by L-NNA (3 x 10(-5) M). From these data we conclude that NO or NO-like substances serve as important inhibitory mediators for the NANC nerve-mediated IAS relaxation. A part of the inhibitory action of VIP on the IAS involves NO-synthase pathway. The exact site of formation and release of NO or NO-like substances in response to NANC nerve stimulation remain to be investigated.


Sign in / Sign up

Export Citation Format

Share Document