mirna seed
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Bridget Donnelly ◽  
Bing Yang ◽  
Chen-Yu Liu ◽  
Katherine McJunkin

MicroRNA (miRNA) abundance is tightly controlled by regulation of biogenesis and decay. Here we show that the mir-35 miRNA family undergoes regulated decay at the transition from embryonic to larval development in C. elegans. The seed sequence of the miRNA is necessary and sufficient for this regulation. Sequences outside the seed (3′ end) regulate mir-35 abundance in the embryo but are not necessary for sharp decay at the transition to larval development. Enzymatic modifications of the miRNA 3′ end are neither prevalent nor correlated with changes in decay, suggesting that miRNA 3′ end display is not a core feature of this mechanism and further supporting a seed-driven decay model. Our findings demonstrate that seed sequence-specific decay can selectively and coherently regulate all redundant members of a miRNA seed family, a class of mechanism that has great biological and therapeutic potential for dynamic regulation of a miRNA family′s target repertoire.



2021 ◽  
Vol 12 ◽  
Author(s):  
Mingyao Luo ◽  
Mingyuan Du ◽  
Chang Shu ◽  
Sheng Liu ◽  
Jiehua Li ◽  
...  

Pulmonary embolism (PE) is a common pathologic condition that frequently occurs in patients with deep venous thrombosis. Severe PE may critically suppress cardiopulmonary function, thereby threatening the life of patients. Chronic pulmonary hypertension caused by PE may lead to deterioration of respiratory dysfunction, resulting in complete disability. MicroRNAs (miRNAs) are a group of abundantly expressed non-coding RNAs that exert multiple functions in regulating the transcriptome via post-transcriptional targeting of mRNAs. Specifically, miRNAs bind to target mRNAs in a matching mechanism between the miRNA seed sequence and mRNA 3ʹ UTR, thus modulating the transcript stability or subsequent translation activity by RNA-induced silencing complex. Current studies have reported the function of miRNAs as biomarkers of PE, revealing their mechanism, function, and targetome in venous thrombophilia. This review summarizes the literature on miRNA functions and downstream mechanisms in PE. We conclude that various related miRNAs play important roles in PE and have great potential as treatment targets. For clinical application, we propose that miRNA biomarkers combined with traditional biomarkers or miRNA signatures generated from microchips may serve as a great predictive tool for PE occurrence and prognosis. Further, therapies targeting miRNAs or their upstream/downstream molecules need to be developed more quickly to keep up with the progress of routine treatments, such as anticoagulation, thrombolysis, or surgery.



2021 ◽  
Author(s):  
Kevin J Peterson ◽  
Alan Beavan ◽  
Peter Chabot ◽  
Mark L McPeek ◽  
Davide Pisani ◽  
...  

Whole genome duplications (WGDs) have long been considered the causal mechanism underlying the dramatic increase in vertebrate morphological complexity relative to invertebrates. This is due to the retention and neo-functionalization of paralogues generated during these events, evolving new regulatory circuits, and ultimately morphological novelty. Nonetheless, an alternative hypothesis suggests that behind the retention of most paralogues is not neo-functionalization, but instead the degree of the inter-connectivity of the intended gene product, as well as the mode of the WGD itself. Here, we explore both the causes and consequences of WGD by examining the distribution, expression, and molecular evolution of microRNAs (miRNAs) in both gnathostome vertebrates as well as chelicerate arthropods. We find that although the number of miRNA paralogues tracks the number of WGDs experienced within the lineage, few of these paralogues experienced changes to the seed sequence, and thus are functionally equivalent relative to their mRNA targets. Nonetheless, the paralogues generated by the gnathostome 2R allotetraploidization event are retained in higher numbers on one sub-genome relative the second, with the miRNAs found on the preferred set of paralogons showing both higher expression of mature miRNA transcripts and slower molecular evolution of the precursor miRNA sequences. Importantly, WGDs do not result in the creation of miRNA novelty, nor do WGDs correlate to increases in complexity. Instead, it is the number of miRNA seed sequences in the genome itself that not only better correlate to instances in complexification, but also mechanistically explain why complexity increases when new miRNA families are established.



2021 ◽  
Author(s):  
Sean E. McGeary ◽  
Namita Bisaria ◽  
David P. Bartel

ABSTRACTMicroRNAs (miRNAs), in association with Argonaute (AGO) proteins, direct repression by pairing to sites within mRNAs. Compared to pairing preferences of the miRNA seed region (nucleotides 2–8), preferences of the miRNA 3′ region are poorly understood, due to the sparsity of measured affinities for the many pairing possibilities. We used RNA bind-n-seq with purified AGO2–miRNA complexes to measure relative affinities of >1,000 3′-pairing architectures for each miRNA. In some cases, optimal 3′ pairing increased affinity by >500-fold. Some miRNAs had two high-affinity 3′-pairing modes—one of which included additional nucleotides bridging seed and 3′ pairing to enable high-affinity pairing to miRNA nucleotide 11. The affinity of binding and the position of optimal pairing both tracked with the occurrence of G or oligo(G/C) nucleotides within the miRNA. These and other results advance understanding of miRNA targeting, providing insight into how optimal 3′ pairing is determined for each miRNA.HIGHLIGHTSRNA bind-n-seq reveals relative affinities of >1,000 3′-pairing architecturesTwo distinct 3′-binding modes can enhance affinity, by >500-fold in some instancesG and oligo(G/C) residues help define the miRNA 3′ segment most critical for pairingSeed mismatch identity can influence the contribution of compensatory 3′ pairing



2020 ◽  
Author(s):  
Jennifer Y. Tan ◽  
Baroj Abdulkarim ◽  
Ana C. Marques

ABSTRACTDetermining which genes are targeted by miRNAs is crucial to elucidate their contributions to diverse biological processes in health and disease. Most miRNA target prediction tools rely on the identification of complementary regions between transcripts and miRNAs. Whereas important for target recognition, the presence of complementary sites is not sufficient to identify transcripts targeted by miRNAs.Here, we describe an unbiased statistical genomics approach that explores genetically driven changes in gene expression between human individuals. Using this approach, we identified transcripts that respond to physiological changes in miRNA levels. We found that a much smaller fraction of mRNAs expressed in lymphoblastoid cell lines (LCLs) than what is predicted by other tools is targeted by miRNAs. We estimate that each miRNA has a relatively small number of targets. The transcripts we predict to be miRNA targets are enriched in AGO-binding and previously validated miRNAs target interactions, supporting the reliability of our predictions. Consistent with previous analysis, these targets are also enriched among dosage sensitive and highly controlled genes.Almost a third of genes we predict to be miRNA targets lack sequence complementarity to the miRNA seed region (noncanonical targets). These noncanonical targets have higher complementary with the miRNA 3’ end. The impact of miRNAs on the levels of their canonical or noncanonical targets is identical supporting the relevance of this poorly explored mechanism of targeting.



2019 ◽  
Author(s):  
Shupei Qiao ◽  
Yufang Zhao ◽  
Kai Li ◽  
Yulu Sun ◽  
Liuke Sun ◽  
...  

AbstractThe establishment of a method that would overexpress or suppress of specific microRNA activity is essential for the functional analysis of these molecules and for the development of miRNA therapeutic applications. There already exist excellent ways to inhibit miRNA function in vitro and in vivo by overexpressing miRNA target sequences, which include miRNA ‘decoys’, ‘sponges’, or ‘antagomirs’ that are complementary to an miRNA seed region. Conversely, no methods to induce stable gain-of-function phenotypes for specific miRNAs have, as yet, been reported. Furthermore, the discovery of complementary miRNA pairs raises suspicion regarding the existing methods used for miRNA overexpression. In our study, we will study whether the traditional methods for miRNA overexpression can be used for specific miRNA overexpression while complementary miRNA pairs exist. In addition, we test various miRNA-expression cassettes that were designed to efficiently overexpress specific miRNA through the shRNA lentivirus expression system. We report the optimal conditions that were established for the design of such miRNA-expression cassettes. We finally demonstrate that the miRNA-expression cassettes achieve efficient and long-term overexpression of specific miRNAs. Meanwhile, our results also support the notion that miRNA–miRNA interactions are implicated in potential, mutual regulatory patterns and beyond the seed sequence of miRNA, extensive pairing interactions between a miRNA and its target also lead to target-directed miRNA degradation. Our results indicate that our method offers a simple and efficient means to over-express the specific miRNA with long-term which will be very useful for future studies in miRNA biology, as well as contributed to the development of miRNA-based therapy for clinical applications.



2018 ◽  
Author(s):  
Jessica Sheu-Gruttadauria ◽  
Yao Xiao ◽  
Luca F. R. Gebert ◽  
Ian J. MacRae

AbstractmicroRNAs (miRNA) guide Argonaute proteins to mRNAs targeted for repression. Target recognition occurs primarily through the miRNA seed region, composed of guide (g) nucleotides g2–g8. However, nucleotides beyond the seed are also important for some known miRNA-target interactions. Here, we report the structure of human Argonaute2 (Ago2) engaged with a target RNA recognized through both miRNA seed and supplementary (g13–g16) regions. Ago2 creates a “supplementary chamber” that accommodates up to 5 miRNA-target base pairs. Seed and supplementary chambers are adjacent to each other, and can be bridged by an unstructured target loop of 1–15 nucleotides. Opening of the supplementary chamber may be constrained by tension in the miRNA 3' tail as increases in miRNA length stabilize supplementary interactions. Contrary to previous reports, we demonstrate optimal supplementary interactions can increase target affinity >20-fold. These results provide a mechanism for extended miRNA-targeting, suggest a function for 3' isomiRs in tuning miRNA targeting specificity, and indicate that supplementary interactions may contribute more to target recognition than is widely appreciated.



2018 ◽  
Vol 61 (3) ◽  
pp. 271-278 ◽  
Author(s):  
Špela Malovrh ◽  
Tanja Kunej ◽  
Milena Kovač ◽  
Peter Dovč

Abstract. MicroRNAs (miRNA) are a class of non-coding RNAs important in posttranscriptional regulation of target genes. Regulation requires complementarity between the target mRNA and the miRNA region responsible for their recognition and binding, also called the seed region. Previous studies have proven that expression profiles and genetic variations of miRNA genes (miR-SNP; SNP – single nucleotide polymorphism) and their target sites (miR-TS-SNPs) have an impact on phenotypic variation and disease susceptibility in human, animal models, and livestock. MicroRNA-associated polymorphisms therefore represent biomarker potential for phenotypic traits in livestock. Effects of miRNA gene polymorphisms on phenotypic traits have been studied in several animal species but much less in cattle. The aim of the present study was therefore to analyze the genetic variability in the bta-mir-2313 gene and test associations with growth and carcass traits of the Slovenian Simmental cattle breed. Additionally, validated and predicted genomic information related to the miRNA gene bta-mir-2313 has been obtained and presented as an atlas of miRNA regulatory elements. Sanger sequencing has been used for biomarker development and genotyping of 145 animals of Slovenian dual-purpose Simmental cattle. Out of nine known polymorphisms located within pre-miRNA regions, one mature miRNA seed SNP was polymorphic in the Slovenian Simmental cattle breed. An additional three polymorphisms were identified within the flanking pri-miRNA regions. There was no significant effect of polymorphisms on 18 tested fattening and carcass traits; however, validated polymorphisms could now be tested in association with other traits in other cattle populations. The microRNA gene bta-mir-2313 warrants further genetic and functional analyses since it overlaps with a large number of quantitative trait loci (QTL), has over 3100 predicted targets and highly polymorphic mature seed regions, and is located within protein-coding gene GRAMD1B, previously associated with production traits in cattle. Mature miRNA seed SNPs present important genomic loci for functional studies because they could affect the gain/loss of downstream targets and should be systematically studied in cattle.



Sign in / Sign up

Export Citation Format

Share Document