scholarly journals Chronic Multi-Electrode Electromyography in Snakes

2022 ◽  
Vol 15 ◽  
Author(s):  
Grady W. Jensen ◽  
Patrick van der Smagt ◽  
Harald Luksch ◽  
Hans Straka ◽  
Tobias Kohl

Knowledge about body motion kinematics and underlying muscle contraction dynamics usually derives from electromyographic (EMG) recordings. However, acquisition of such signals in snakes is challenging because electrodes either attached to or implanted beneath the skin may unintentionally be removed by force or friction caused from undulatory motion, thus severely impeding chronic EMG recordings. Here, we present a reliable method for stable subdermal implantation of up to eight bipolar electrodes above the target muscles. The mechanical stability of the inserted electrodes and the overnight coverage of the snake body with a “sleeping bag” ensured the recording of reliable and robust chronic EMG activity. The utility of the technique was verified by daily acquisition of high signal-to-noise activity from all target sites over four consecutive days during stimulus-evoked postural reactions in Amazon tree boas and Western diamondback rattlesnakes. The successful demonstration of the chronic recording suggests that this technique can improve acute experiments by enabling the collection of larger data sets from single individuals.

2006 ◽  
Vol 326-328 ◽  
pp. 823-826
Author(s):  
Li Li Xin ◽  
Gregory S. Chirikjian

This paper concerns a mechanics of interactions of helical structures in proteins. Helices are the most important secondary structures of proteins and contribute the formation of a more complex 3-D structure, and so the analysis of interactions of helices is quite critical. We examine 1290 protein structures that have 2.0 Å or better resolutions and less than 20 percent of their sequences in common. Interactions between helices are represented by two parameters: the distance and angle. Assuming that helices are slender rigid rods with finite length, we define three different mechanisms of interactions: (1) line-on-line contact; (2) endpoint-to-line contact; and (3) endpointto- endpoint contact. In this paper, interactions for the first case are expressed with the 3-D relative rigid-body motion (position and orientation) and the unique volume element for correctly integrating over rigid-body motions are determined using six parameters. The results are extremely useful for the correct analysis of interactions in terms of distance and angle without the statistical biases inherent in the three data sets.


1988 ◽  
Vol 254 (2) ◽  
pp. G254-G263 ◽  
Author(s):  
I. M. Lang ◽  
J. Marvig ◽  
S. K. Sarna

The gastrointestinal motor and myoelectric responses associated with vomiting induced by apomorphine (APO) and activated by cholecystokinin octapeptide (CCK-8) were compared as well as the mechanisms of initiation of these responses. Twelve dogs were surgically implanted with strain-gauge force transducers or bipolar electrodes for chronic recording of contractile or electrical activity. The responses to CCK-8 were determined in the fasted state and compared with the gastrointestinal motor and myoelectric correlates of vomiting activated by APO. After recording control responses, the effects of the following agents on these responses were determined: atropine, domperidone, and proglumide. In addition, the effects of supradiaphragmatic vagotomy or splanchnicectomy were determined. We found that CCK-8 activated contractile and myoelectric responses in the absence of vomiting, which were similar in most respects to those found in association with vomiting. These responses included 1) the retrograde giant contraction (RGC) and 2) the post-RGC phasic contractions. These RGCs were similar with respect to their activation in an all-or-none fashion, magnitude, duration, and position in the small intestine. The myoelectric correlates of these motor responses were similar qualitatively and quantitatively. The responses activated by APO and CCK-8 differed with respect to their coordination at different levels of the gastrointestinal tract. Whether activated by CCK-8 or APO, atropine blocked the RGC but not the post-RGC contractions. Domperidone blocked all responses to APO but not to CCK-8, and splanchnicectomy did not affect responses to either agent. Vagotomy blocked all gastrointestinal responses to APO but not to CCK-8. These results indicated that CCK-8 activates the gastrointestinal motor and myoelectric correlates of vomiting by a peripheral mechanism that does not include dopamine receptors.


Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. J35-J48 ◽  
Author(s):  
Bernard Giroux ◽  
Abderrezak Bouchedda ◽  
Michel Chouteau

We introduce two new traveltime picking schemes developed specifically for crosshole ground-penetrating radar (GPR) applications. The main objective is to automate, at least partially, the traveltime picking procedure and to provide first-arrival times that are closer in quality to those of manual picking approaches. The first scheme is an adaptation of a method based on cross-correlation of radar traces collated in gathers according to their associated transmitter-receiver angle. A detector is added to isolate the first cycle of the radar wave and to suppress secon-dary arrivals that might be mistaken for first arrivals. To improve the accuracy of the arrival times obtained from the crosscorrelation lags, a time-rescaling scheme is implemented to resize the radar wavelets to a common time-window length. The second method is based on the Akaike information criterion(AIC) and continuous wavelet transform (CWT). It is not tied to the restrictive criterion of waveform similarity that underlies crosscorrelation approaches, which is not guaranteed for traces sorted in common ray-angle gathers. It has the advantage of being automated fully. Performances of the new algorithms are tested with synthetic and real data. In all tests, the approach that adds first-cycle isolation to the original crosscorrelation scheme improves the results. In contrast, the time-rescaling approach brings limited benefits, except when strong dispersion is present in the data. In addition, the performance of crosscorrelation picking schemes degrades for data sets with disparate waveforms despite the high signal-to-noise ratio of the data. In general, the AIC-CWT approach is more versatile and performs well on all data sets. Only with data showing low signal-to-noise ratios is the AIC-CWT superseded by the modified crosscorrelation picker.


2020 ◽  
Vol 39 (5) ◽  
pp. 324-331
Author(s):  
Gary Murphy ◽  
Vanessa Brown ◽  
Denes Vigh

As part of a wide-reaching full-waveform inversion (FWI) research program, FWI is applied to an onshore seismic data set collected in the Delaware Basin, west Texas. FWI is routinely applied on typical marine data sets with high signal-to-noise ratio (S/N), relatively good low-frequency content, and reasonably long offsets. Land seismic data sets, in comparison, present significant challenges for FWI due to low S/N, a dearth of low frequencies, and limited offsets. Recent advancements in FWI overcome limitations due to poor S/N and low frequencies making land FWI feasible to use to update the shallow velocities. The chosen area has contrasting and variable near-surface conditions providing an excellent test data set on which to demonstrate the workflow and its challenges. An acoustic FWI workflow is used to update the near-surface velocity model in order to improve the deeper image and simultaneously help highlight potential shallow drilling hazards.


1987 ◽  
Vol 63 (2) ◽  
pp. 713-718 ◽  
Author(s):  
B. J. Jasmin ◽  
P. F. Gardiner

The purpose of the study was to examine the patterns of electromyographic (EMG) activity of the rat plantaris during loaded swimming in comparison with other locomotor activities. Five female Sprague-Dawley rats were implanted with chronic bipolar electrodes in the plantaris muscle of the left hindlimb under pentobarbital anesthesia. Characteristics of EMG bursts recorded while the conscious rat was performing treadmill walking (0.24 m/s) were stable and reproducible 10–14 days postsurgery. Following this stabilization period, records of EMG activity were obtained during walking, loaded swimming (6.5 g attached to tail), and several other locomotor tasks. Compared to walking, EMG bursts during loaded swimming were significantly higher (67%) in maximum amplitude, one-third as long in duration, and occurred at a greater rate (4.4 vs. 1.7 bursts/s, P less than 0.05). Swimming bursts were of higher amplitudes than those of all other activities examined and reached 65% of the EMG amplitude recorded following stimulation of the sciatic nerve with supramaximal voltage. The addition of a mass to the animal's tail during swimming did not increase the EMG burst amplitudes but resulted in a higher frequency of bursts. Compared with treadmill walking, loaded swimming elicited burst of high variability in amplitude. Swimming in the rat involves rapid, extensive activation of plantaris, thus providing an exercise model to study the adaptability of the neuromuscular system to prolonged activity of this type.


2017 ◽  
Vol 47 (4) ◽  
pp. 561-590
Author(s):  
Daniela Schievano de Campos ◽  
Adalene Moreira Silva ◽  
Catarina Laboure Bemfica Toledo ◽  
Marcelo Juliano de Carvalho ◽  
Vinícius Gomes Rodrigues ◽  
...  

ABSTRACT: The Faina Greenstone Belt is located in the southern sector of the Goiás Archean Block and has been investigated since the 18th century because of its gold deposits. Recent studies have revealed the polymetallic potential of the belt, which is indicated by anomalous levels of Ag, Cu, Fe and Co in addition to Mn, Ba, Li, Ni, Cr and Zn. This study was developed based on a detailed analysis of two selected target sites, Cascavel and Tinteiro, and multiple data sets, such as airborne geophysics, geochemistry and geological information. These datasets were used to create a final prospectivity map using the fuzzy logic technique. The gold mineralization of Cascavel target is inserted in an orogenic system and occurs in two overlapping quartz veins systems, called Mestre-Cascavel and Cuca, embedded in quartzite with an average thickness 50 cm and guidance N45º-60ºW/25ºSW with free coarse gold in grains 2-3 mm to 3 cm. The prospectivity map created for this prospect generated four first-order favorable areas for mineralization and new medium-favorability foci. The Tinteiro area, derived from studies conducted by Orinoco do Brasil Mineração Ltda., shows polymetallic mineralization associated with an iron oxide-copper-gold ore deposit (IOCG) system posterior to Cascavel target mineralization. Its prospectivity map generated 19 new target sites with the potential for Au, Cu and Ag mineralization, suggesting new directions for future prospecting programs.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. V79-V89 ◽  
Author(s):  
Wail A. Mousa ◽  
Abdullatif A. Al-Shuhail ◽  
Ayman Al-Lehyani

We introduce a new method for first-arrival picking based on digital color-image segmentation of energy ratios of refracted seismic data. The method uses a new color-image segmentation scheme based on projection onto convex sets (POCS). The POCS requires a reference color for the first break and one iteration to segment the first-break amplitudes from other arrivals. We tested the segmentation method on synthetic seismic data sets with various amounts of additive Gaussian noise. The proposed method gives similar performance to a modified version of Coppens’ method for traces with high signal-to-noise ratio and medium-to-large offsets. Finally, we applied our method and used as well the modified first-arrival picking method based on Coppens’ method to pick the first arrivals on four real data sets, where both were compared to the first breaks that were picked manually and then interpolated. Based on an assessment error of a 20-ms window with respect to manual picks that are interpolated, we find that our method gives comparable performance to Coppens’ method, depending on the data difficulty of picking first arrivals. Therefore, we believe that our proposed method is a good new addition to the existing methods of first-arrival picking.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1873-1873
Author(s):  
Kostiantyn Dreval ◽  
Bruno M. Grande ◽  
Helena Winata ◽  
Jasper Wong ◽  
Lakshay Sethi ◽  
...  

Abstract Introduction: Genome- and transcriptome-wide analyses continue to enhance our understanding of the molecular pathogenesis of cancer. In lymphomas, this has enabled the identification of hundreds of recurrently mutated genes, highlighting genetic heterogeneity and relationships both within and among clinical entities. While the growing availability of lymphoma genomic data sets can be leveraged to integrate genomic analyses into diagnostic testing and clinical trials, the ability to rapidly process genomic data sets in a reproducible manner serves as a barrier to this goal. To this end, we developed a suite of tools Lymphoid Cancer Research modules (LCR-modules) to facilitate the discovery of novel drivers and molecular features in lymphoma cancers and perform quantitative comparisons between disease entities. We demonstrate here how this toolkit enabled a meta-analysis of lymphoma genomic data involving genome-wide profiles of 3330 patients. Methods: We assembled a collection of whole genome, whole exome, and RNA sequencing data from a combination of controlled-access repositories and ongoing projects at BC Cancer. The scope of genomic analysis of mature B-cell lymphomas (GAMBL) project includes cell lines and patient tumors from all common mature B cell neoplasms, comprising a total of 4612 samples from 3330 patients. To facilitate the project, we developed a suite of open-source and custom bioinformatics tools (https://github.com/LCR-BCCRC/lcr-modules) that leverages the Snakemake workflow management system and includes lymphoma-centric modules for the discovery and annotation of common mutation types, analysis of B-cell receptor repertoires and discovery of novel aSHM targets and relevant non-coding mutations, and RNA-seq analysis with batch correction and normalization. Individual modules are configured to create an automated, scalable, and reproducible workflow that runs each step as dictated by the availability of new data. The cohort-level integrative analysis and comparisons across entities are handled by our custom R package GAMBLR, which facilitates open-ended data analysis and custom visualizations. Results: Simple somatic mutations (SSM) were detected using a workflow that utilizes four algorithms to identify high-confidence variants with validated default thresholds for filtering of germline variants and common FFPE-associated artifacts, allowing for processing of samples without matched normal tissue. This automated and reproducible workflow facilitated the discovery of novel genes significantly mutated across lymphomas and broadened our understanding of the scope of aberrant somatic hypermutation (aSHM) and other non-coding mutations. Specifically, HNRNPU, STAT3, TFAP4, RRAGC were found to be mutated at relatively low frequencies, and their presence is a distinct feature of certain lymphomas or novel genetic subgroups within lymphoma types (Figure 1A). The aSHM analysis and discovery of novel hypermutated regions is handled by a custom tool Rainstorm. As a result, we were able to detect sites preferentially hypermutated in a single entity, such as the transcription start site of BACH2, mutated at lower rates than the other common target sites but significantly more in BL compared to other entities (Figure 1B). Combining aSHM at target sites discovered using our toolkit with other genetic features allowed us to explore and establish novel genetic subgroups within Burkitt lymphoma and follicular lymphoma. SV analysis can be conducted using Manta, GRIDSS, and JaBbA modules with downstream processing in GAMBLR. In B-cell lymphomas, the most common SVs identified using the automated workflow were targeting MYC, BCL2, and CCND1. Unsurprisingly, the most common translocation partner among B-cell lymphomas was the immunoglobulin heavy chain, but the novel BCL6-FOXP1, CD274-BACH2, BCL6-RHOH translocations in DLBCLs and MYC-BCL6 translocations in BLs were identified, among others (Figure 1C). Conclusions: We present here the modularized workflow for scalable and automated analysis of genomic and transcriptomic data and demonstrate that it can be successfully deployed across thousands of tumour samples for the discovery of known and novel lymphoma biology. This represents an important advancement in reproducibility that will facilitate clinical translation of genomic discoveries. Figure 1 Figure 1. Disclosures Grande: Sage Bionetworks: Current Employment. Coyle: Allakos, Inc.: Consultancy. Steidl: AbbVie: Consultancy; Trillium Therapeutics: Research Funding; Epizyme: Research Funding; Seattle Genetics: Consultancy; Curis Inc.: Consultancy; Bayer: Consultancy; Bristol-Myers Squibb: Research Funding. Scott: Abbvie: Consultancy; NanoString Technologies: Patents & Royalties: Patent describing measuring the proliferation signature in MCL using gene expression profiling.; Celgene: Consultancy; AstraZeneca: Consultancy; Incyte: Consultancy; Janssen: Consultancy, Research Funding; Rich/Genentech: Research Funding; BC Cancer: Patents & Royalties: Patent describing assigning DLBCL COO by gene expression profiling--licensed to NanoString Technologies. Patent describing measuring the proliferation signature in MCL using gene expression profiling. . Morin: Epizyme: Patents & Royalties; Celgene: Consultancy; Foundation for Burkitt Lymphoma Research: Membership on an entity's Board of Directors or advisory committees.


2020 ◽  
Vol 498 (4) ◽  
pp. 5704-5719
Author(s):  
Nicola R Napolitano ◽  
Giuseppe D’Ago ◽  
Crescenzo Tortora ◽  
Gang Zhao ◽  
A-Li Luo ◽  
...  

ABSTRACT The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is a major facility to carry out spectroscopic surveys for cosmology and galaxy evolution studies. The seventh data release of the LAMOST ExtraGAlactic Survey (LEGAS) is currently available and including redshifts of 193 361 galaxies. These sources are spread over $\sim 11\, 500$ deg2 of the sky, largely overlapping with other imaging (SDSS and HSC) and spectroscopic (BOSS) surveys. The estimated depth of the galaxy sample, r ∼ 17.8, the high signal-to-noise ratio, and the spectral resolution R = 1800, make the LAMOST spectra suitable for galaxy velocity dispersion (VD) measurements, which are invaluable to study the structure and formation of galaxies and to determine their central dark matter content. We present the first estimates of central VD of $\sim 86\, 000$ galaxies in LAMOST footprint. We have used a wrap-up procedure to perform the spectral fitting using ppxf, and derive VD measurements. Statistical errors are also assessed by comparing LAMOST VD estimates with the ones of SDSS and BOSS over a common sample of $\sim 51\, 000$ galaxies. The two data sets show a good agreement, within the statistical errors, in particular when VD values are corrected to 1 effective radius aperture. We also present a preliminary mass–σ relation and find consistency with previous analyses based on local galaxy samples. These first results suggest that LAMOST spectra are suitable for galaxy VD measurements to complement the available catalogues of galaxy internal kinematics in the Northern hemisphere. We plan to expand this analysis to next LAMOST data releases.


1989 ◽  
Vol 66 (4) ◽  
pp. 1766-1771 ◽  
Author(s):  
R. C. Basner ◽  
P. M. Simon ◽  
R. M. Schwartzstein ◽  
S. E. Weinberger ◽  
J. W. Weiss

Both nasal obstruction and nasal anesthesia result in disordered breathing during sleep in humans, and bypassing the nasal route during tidal breathing in experimental animals produces decreased electromyographic activity of upper airway (UA) dilating muscles. To investigate UA responses to breathing route in normal awake humans, we studied eight healthy males (ages 21–38 yr) during successive trials of voluntary nose breathing (N), voluntary mouth breathing (M), and mouth breathing with nose occluded (MO). We measured genioglossus electromyographic activity (EMGgg) with perorally inserted bipolar electrodes, alae nasi (EMGan) and diaphragm EMG activity (EMGdi) with surface electrodes, and minute ventilation (VE) with a pneumotachograph. Mean phasic inspiratory EMG activity of both UA muscles was significantly greater during N than during M or MO, even when a 2.5-cmH2O.l-1.s inspiratory resistance was added to MO (P less than 0.01). In contrast, neither EMGdi nor VE was consistently affected by breathing route. EMGgg during N was significantly decreased after selective topical nasal anesthesia (P less than 0.002); a decrease in EMGan did not achieve statistical significance. These data suggest that peak UA dilating muscle activity may be modulated by superficial receptors in the nasal mucosa sensitive to airflow.


Sign in / Sign up

Export Citation Format

Share Document