pp2a inhibitor
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 2)

FEBS Journal ◽  
2021 ◽  
Author(s):  
Chandan Thapa ◽  
Pekka Roivas ◽  
Tatu Haataja ◽  
Perttu Permi ◽  
Ulla Pentikäinen

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3087
Author(s):  
Jean-Paul Bryant ◽  
Adam Levy ◽  
John Heiss ◽  
Yeshavanth Kumar Banasavadi-Siddegowda

Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase implicated in a wide variety of regulatory cellular functions. PP2A is abundant in the mammalian nervous system, and dysregulation of its cellular functions is associated with myriad neurodegenerative disorders. Additionally, PP2A has oncologic implications, recently garnering attention and emerging as a therapeutic target because of the antitumor effects of a potent PP2A inhibitor, LB100. LB100 abrogation of PP2A is believed to exert its inhibitory effects on tumor progression through cellular chemo- and radiosensitization to adjuvant agents. An updated and unifying review of PP2A biology and inhibition with LB100 as a therapeutic strategy for targeting cancers of the nervous system is needed, as other reviews have mainly covered broader applications of LB100. In this review, we discuss the role of PP2A in normal cells and tumor cells of the nervous system. Furthermore, we summarize current evidence regarding the therapeutic potential of LB100 for treating solid tumors of the nervous system.


Author(s):  
Xiao Jiang ◽  
Jiandong Hu ◽  
Ziru Wu ◽  
Sarah Trusso Cafarello ◽  
Mario Di Matteo ◽  
...  

Angiogenesis is an essential process during development. Abnormal angiogenesis also contributes to many disease conditions such as tumor and retinal diseases. Previous studies have established the Hippo signaling pathway effector Yes-associated protein (YAP) as a crucial regulator of angiogenesis. In ECs, activated YAP promotes endothelial cell proliferation, migration and sprouting. YAP activity is regulated by vascular endothelial growth factor (VEGF) and mechanical cues such as extracellular matrix (ECM) stiffness. However, it is unclear how VEGF or ECM stiffness signal to YAP, especially how dephosphorylation of YAP occurs in response to VEGF stimulus or ECM stiffening. Here, we show that protein phosphatase 2A (PP2A) is required for this process. Blocking PP2A activity abolishes VEGF or ECM stiffening mediated YAP activation. Systemic administration of a PP2A inhibitor suppresses YAP activity in blood vessels in developmental and pathological angiogenesis mouse models. Consistently, PP2A inhibitor also inhibits sprouting angiogenesis. Mechanistically, PP2A directly interacts with YAP, and this interaction requires proper cytoskeleton dynamics. These findings identify PP2A as a crucial mediator of YAP activation in ECs and hence as an important regulator of angiogenesis.


Author(s):  
Jean-Paul Bryant ◽  
Adam Levy ◽  
John Heiss ◽  
Yeshavanth Kumar Banasavadi-Siddegowda

Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase implicated in a wide variety of regulatory cellular functions. PP2A is abundant in the mammalian nervous system and dysregulation of its cellular functions are associated with myriad neurodegenerative disorders. Additionally, PP2A has oncologic implications, recently garnering attention and emerging as a therapeutic target because of the antitumor effects of a potent PP2A inhibitor, LB100. LB100 abrogation of PP2A is believed to exert its inhibitory effects on tumor progression through cellular chemo- and radio-sensitization to adjuvant agents. An updated and unifying review of PP2A biology and inhibition with LB100 as a therapeutic strategy for targeting cancers of the nervous system is needed, as other reviews have mainly covered broader applications of LB100. In this review, we discuss the role of PP2A in normal cells and tumor cells of the nervous system. Further, we summarize current evidence regarding the therapeutic potential of LB100 for treating solid tumors of the nervous system.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chandan Thapa ◽  
Pekka Roivas ◽  
Tatu Haataja ◽  
Perttu Permi ◽  
Ulla Pentikäinen

Protein phosphatase 2A (PP2A) activity is critical for maintaining normal physiological cellular functions. PP2A is inhibited by endogenous inhibitor proteins in several pathological conditions including cancer. A PP2A inhibitor protein, ARPP-19, has recently been connected to several human cancer types. Accordingly, the knowledge about ARPP-19—PP2A inhibition mechanism is crucial for the understanding the disease development and the therapeutic targeting of ARPP-19—PP2A. Here, we show the first structural characterization of ARPP-19, and its splice variant ARPP-16 using NMR spectroscopy, and SAXS. The results reveal that both ARPP proteins are intrinsically disordered but contain transient secondary structure elements. The interaction mechanism of ARPP-16/19 with PP2A was investigated using microscale thermophoresis and NMR spectroscopy. Our results suggest that ARPP—PP2A A-subunit interaction is mediated by linear motif and has modest affinity whereas, the interaction of ARPPs with B56-subunit is weak and transient. Like many IDPs, ARPPs are promiscuous binders that transiently interact with PP2A A- and B56 subunits using multiple interaction motifs. In summary, our results provide a good starting point for future studies and development of therapeutics that block ARPP-PP2A interactions.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Anne Slomp ◽  
Laura M. Moesbergen ◽  
Eric Eldering ◽  
Marie José Kersten ◽  
Monique C. Minnema ◽  
...  

AbstractMultiple myeloma (MM), a treatable but incurable malignancy, is characterized by the growth of clonal plasma cells in protective niches in the bone marrow. MM cells depend on expression of BCL-2 family proteins, in particular MCL-1, for survival. The regulation of MCL-1 is complex and cell type-dependent. Unraveling the exact mechanism by which MCL-1 is overexpressed in MM may provide new therapeutic strategies for inhibition in malignant cells, preferably limiting side effects in healthy cells. In this study, we reveal that one cause of overexpression could be stabilization of the MCL-1 protein. We demonstrate this in a subset of MM and diffuse large B cell lymphoma (DLBCL) cell lines and MM patient samples. We applied a phosphatase siRNA screen to identify phosphatases responsible for MCL-1 stabilization in MM, and revealed PP2A as the MCL-1 stabilizing phosphatase. Using the PP2A inhibitor okadaic acid, we validated that PP2A dephosphorylates MCL-1 at Ser159 and/or Thr163, and thereby stabilizes MCL-1 in MM cells with long MCL-1 half-life, but not in DLBCL cells. Combined kinase and phosphatase inhibition experiments suggest that the MCL-1 half-life in MM is regulated by the counteracting functions of JNK and PP2A. These findings increase the understanding of the mechanisms by which MCL-1 is post-translationally regulated, which may provide novel strategies to inhibit MCL-1 in MM cells.


ASN NEURO ◽  
2021 ◽  
Vol 13 ◽  
pp. 175909142098492
Author(s):  
Santiago Andrés Plano ◽  
María Soledad Alessandro ◽  
Laura Lucía Trebucq ◽  
Shogo Endo ◽  
Diego Andrés Golombek ◽  
...  

The mammalian circadian clock at the hypothalamic suprachiasmatic nuclei (SCN) entrains biological rhythms to the 24-h cyclic environment, by encoding light-dark transitions in SCN neurons. Light pulses induce phase shifts in the clock and in circadian rhythms; photic signaling for circadian phase advances involves a nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) pathway, increasing the expression of Period ( Per) genes. Effectors downstream of PKG remain unknown. Here we investigate the role of G-substrate (GS), a PKG substrate, in the hamster SCN. GS and phosphorylated G-substrate (p-GS) were present in a subset of SCN cells. Moreover, GS phosphorylation (p-GS/GS ratio) increased in SCN homogenates after light pulses delivered at circadian time (CT) 18 and intraperitoneal treatment with sildenafil, an inhibitor of phosphodiesterase 5 (a cGMP-specific phosphodiesterase). On the other hand, intracerebroventricular treatment with the PKG inhibitor KT5823, reduced photic phosphorylation of GS to basal levels. Since p-GS could act as a protein phosphatase 2 A (PP2A) inhibitor, we demonstrated physical interaction between p-GS and PP2A in SCN homogenates, and also a light-pulse dependent decrease of PP2A activity. Intracerebroventricular treatment with okadaic acid, a PP2A inhibitor, increased the magnitude of light-induced phase advances of locomotor rhythms. We provide evidence on the physiological phosphorylation of GS as a new downstream effector in the NO/cGMP/PKG photic pathway in the hamster SCN, including its role as a PP2A inhibitor.


2019 ◽  
Vol 317 (4) ◽  
pp. G408-G428 ◽  
Author(s):  
Muayad Albadrani ◽  
Ratanesh K. Seth ◽  
Sutapa Sarkar ◽  
Diana Kimono ◽  
Ayan Mondal ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is an emerging global pandemic. Though significant progress has been made in unraveling the pathophysiology of the disease, the role of protein phosphatase 2A (PP2A) and its subsequent inhibition by environmental and genetic factors in NAFLD pathophysiology remains unclear. The present report tests the hypothesis that an exogenous PP2A inhibitor leads to hepatic inflammation and fibrogenesis via an NADPH oxidase 2 (NOX2)-dependent pathway in NAFLD. Results showed that microcystin (MC) administration, a potent PP2A inhibitor found in environmental exposure, led to an exacerbation of NAFLD pathology with increased CD68 immunoreactivity, the release of proinflammatory cytokines, and stellate cell activation, a process that was attenuated in mice that lacked the p47phox gene and miR21 knockout mice. Mechanistically, leptin-primed immortalized Kupffer cells (a mimicked model for an NAFLD condition) treated with apocynin or nitrone spin trap 5,5 dimethyl-1- pyrroline N-oxide (DMPO) had significantly decreased CD68 and decreased miR21 and α-smooth muscle actin levels, suggesting the role of NOX2-dependent reactive oxygen species in miR21-induced Kupffer cell activation and stellate cell pathology. Furthermore, NOX2-dependent peroxynitrite generation was primarily responsible for cellular events observed following MC exposure since incubation with phenylboronic acid attenuated miR21 levels, Kupffer cell activation, and inflammatory cytokine release. Furthermore, blocking of the AKT pathway attenuated PP2A inhibitor-induced NOX2 activation and miR21 upregulation. Taken together, we show that PP2A may have protective roles, and its inhibition exacerbates NAFLD pathology via activating NOX2-dependent peroxynitrite generation, thus increasing miR21-induced pathology. NEW & NOTEWORTHY Protein phosphatase 2A inhibition causes nonalcoholic steatohepatitis (NASH) progression via NADPH oxidase 2. In addition to a novel emchanism of action, we describe a new tool to describe NASH histopathology.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Yan Tang ◽  
JungWoo Yang ◽  
Wang Zheng ◽  
Jingfeng Tang ◽  
Xing-Zhen Chen ◽  
...  

Autosomalplease go to the Account Update page (http://mts.hindawi.com/update/) in our Manuscript Tracking System and after you have logged in click on the ORCID link at the top of the page. This link will take you to the ORCID website where you will be able to create an account for yourself. Once you have done so, your new ORCID will be saved in our Manuscript Tracking System automatically."?> dominant polycystic kidney disease (ADPKD) is associated with a number of cellular defects such as hyperproliferation, apoptosis, and dedifferentiation. Mutations in polycystin-1 (PC1) account for ∼85% of ADPKD. Here, we showed that wild-type (WT) or mutant PC1 composed of the last five transmembrane (TM) domains and the C-terminus (termed PC1-5TMC) inhibits cell proliferation and protein translation, as well as the downstream effectors of mTOR, consistent with previous reports. Knockdown of B56α, a subunit of the protein phosphatase 2A (PP2A) complex, or application of PP2A inhibitor okadaic acid or calyculin A, abolished the inhibitory effect of PC1 and PC1-5TMC on proliferation, indicating that PP2A/B56α mediates the regulation of cell proliferation by PC1. In addition to the phosphorylated S6 and 4EBP1, B56α was also downregulated by PC1 and PC1-5TMC. Furthermore, the downregulation of B56α, which may be mediated by mTOR but not AKT, can account for the dependence of PC1-inhibited proliferation on PP2A.


2019 ◽  
Author(s):  
Eleonora Mäkelä ◽  
Eliisa Löyttyniemi ◽  
Urpu Salmenniemi ◽  
Otto Kauko ◽  
Taru Varila ◽  
...  

AbstractDespite of extensive genetic analysis of acute myeloid leukemia (AML), we still do not understand comprehensively mechanism that promote disease relapse from standard chemotherapy. Based on recent indications for non-genomic inhibition of tumor suppressor protein phosphatase 2A (PP2A) in AML, we examined mRNA expression of PP2A inhibitor proteins in AML patient samples. Notably, out of examined PP2A inhibitor proteins, overexpression of ARPP19 mRNA was found independent of current AML risk classification. Functionally, ARPP19 promoted AML cell viability and expression of oncoproteins MYC, CDK1, and another PP2A inhibitor CIP2A. Clinically, ARPP19 mRNA expression was significantly lower at diagnosis (p=0.035) in patients whose disease did not relapse after standard chemotherapy. ARPP19 was an independent predictor for relapse both in univariable (p=0.007) and in multivariable analyses (p=0.0001); and gave additive information to EVI1 expression and risk group status (additive effect, p=0.005). Low ARPP19 expression also associated with better patient outcome in TCGA LAML cohort (p=0.019). In addition, in matched patient samples from diagnosis, remission and relapse phases, ARPP19 expression associated with disease activity (p=0.034).Together, these data identify ARPP19 as a novel oncogenic PP2A inhibitor protein in AML, and demonstrate its risk group independent role in predicting AML patient relapse tendency.


Sign in / Sign up

Export Citation Format

Share Document