intrinsic program
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Elizabeth D English ◽  
Amandine Guerin ◽  
Jayesh Tandel ◽  
Boris Striepen

Cryptosporidium is a leading infectious cause of diarrhea around the world associated with waterborne outbreaks, community spread, or zoonotic transmission. The parasite has significant impact on early childhood mortality, and infection is both consequence and cause of malnutrition and stunting. There is currently no vaccine, and treatment options are very limited. Cryptosporidium is a member of the Apicomplexa, and as typical for this protist phylum relies on asexual and sexual reproduction. In contrast to other Apicomplexa, like malaria parasite Plasmodium, Cryptosporidium's entire lifecycle unfolds in a single host in less than three days. Here we establish a model to image lifecycle progression in living cells, and observe, track, and compare nuclear division of asexual and sexual stage parasites. We establish the length and sequence of the cell cycles of all stages and map the developmental fate of parasites across multiple rounds of invasion and egress. We determine that the parasite executes an intrinsic program of three generations of asexual replication, followed by a single generation of sexual stages that is independent of environmental stimuli. We find no evidence for a morphologically distinct intermediate stage (the tetraploid type II meront) but demonstrate direct development of gametes from 8N type I meronts. The progeny of each meront is collectively committed to either asexual or sexual fate, but importantly, meronts committed to sexual fate give rise to both males and females. We define a Cryptosporidium lifecycle matching Tyzzer's original description and inconsistent with the coccidian lifecycle now shown in many textbooks.


2021 ◽  
Vol 2 ◽  
Author(s):  
Susan L. Swain ◽  
Olivia Kugler-Umana ◽  
Susan L. Tonkonogy

As mice age their adaptive immune system changes dramatically, leading to weakened responses to newly encountered antigens and poor efficacy of vaccines. A shared pattern emerges in the aged, with both CD4 T and B cell responses requiring higher levels of pathogen recognition. Moreover, in aged germ-free mice we find accumulation of the same novel age-associated T and B cell subsets that we and others have previously identified using mice maintained in normal laboratory animal housing conditions, suggesting that their development follows an intrinsic program.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Anthony M Rossi ◽  
Claude Desplan

Temporal patterning of neural progenitors leads to the sequential production of diverse neurons. To understand how extrinsic cues influence intrinsic temporal programs, we studied Drosophila mushroom body progenitors (neuroblasts) that sequentially produce only three neuronal types: γ, then α’β’, followed by αβ. Opposing gradients of two RNA-binding proteins Imp and Syp comprise the intrinsic temporal program. Extrinsic activin signaling regulates the production of α’β’ neurons but whether it affects the intrinsic temporal program was not known. We show that the activin ligand Myoglianin from glia regulates the temporal factor Imp in mushroom body neuroblasts. Neuroblasts missing the activin receptor Baboon have a delayed intrinsic program as Imp is higher than normal during the α’β’ temporal window, causing the loss of α’β’ neurons, a decrease in αβ neurons, and a likely increase in γ neurons, without affecting the overall number of neurons produced. Our results illustrate that an extrinsic cue modifies an intrinsic temporal program to increase neuronal diversity.


RSC Advances ◽  
2020 ◽  
Vol 10 (31) ◽  
pp. 18469-18476
Author(s):  
Oliver Piech ◽  
Russell J. Cox

Site-directed mutation of the enoyl reductase (ER) component of an iterative highly-reducing polyketide synthase was achieved for the first time, expanding its intrinsic program.


2016 ◽  
Vol 116 (4) ◽  
pp. 1821-1830 ◽  
Author(s):  
Michael J. Siniscalchi ◽  
Elizabeth C. Cropper ◽  
Jian Jing ◽  
Klaudiusz R. Weiss

Repetition priming is characterized by increased performance as a behavior is repeated. Although this phenomenon is ubiquitous, mediating mechanisms are poorly understood. We address this issue in a model system, the feeding network of Aplysia. This network generates both ingestive and egestive motor programs. Previous data suggest a chemical coding model: ingestive and egestive inputs to the feeding central pattern generator (CPG) release different modulators, which act via different second messengers to prime motor activity in different ways. The ingestive input to the CPG (neuron CBI-2) releases the peptides feeding circuit activating peptide and cerebral peptide 2, which produce an ingestive pattern of activity. The egestive input to the CPG (the esophageal nerve) releases the peptide small cardioactive peptide. This model is based on research that focused on a single aspect of motor control (radula opening). Here we ask whether repetition priming is observed if activity is triggered with a neuron within the core CPG itself and demonstrate that it is not. Moreover, previous studies demonstrated that effects of modulatory neurotransmitters that induce repetition priming persist. This suggests that it should be possible to “prime” motor programs triggered from within the CPG by first stimulating extrinsic modulatory inputs. We demonstrate that programs triggered after ingestive input activation are ingestive and programs triggered after egestive input activation are egestive. We ask where this priming occurs and demonstrate modifications within the CPG itself. This arrangement is likely to have important consequences for “task” switching, i.e., the cessation of one type of motor activity and the initiation of another.


Author(s):  
A. Fantini ◽  
G. Gorine ◽  
R. Degraeve ◽  
L. Goux ◽  
C. Y. Chen ◽  
...  
Keyword(s):  

2013 ◽  
Vol 115 (11) ◽  
pp. 1583-1588 ◽  
Author(s):  
David F. Wilson

Mitochondrial oxidative phosphorylation is programmed to set and maintain metabolic homeostasis. This is accomplished through an intrinsic program that determines the metabolic [ATP]/[ADP]/[Pi], where [Pi] is the concentration of inorganic phosphate (energy state) and maintains it through a bidirectional sensory/signaling control network that reaches every aspect of cellular metabolism. The program sets the energy state with high precision (to better than one part in 109) and can respond to transient changes in energy demand (ATP use) to more than 100 times the resting rate. Epigenetic and environmental factors are able to “fine tune” the programmed set point over a narrow range to meet the special needs associated with cell differentiation and chronic changes in metabolic requirements. The result is robust, across platform control of metabolism, essential to cellular differentiation and the evolution of complex organisms.


2008 ◽  
Vol 105 (46) ◽  
pp. 17919-17924 ◽  
Author(s):  
Julia Raberger ◽  
Alexandra Schebesta ◽  
Shinya Sakaguchi ◽  
Nicole Boucheron ◽  
K. Emelie M. Blomberg ◽  
...  

Transcriptional pathways controlling the development of CD44hi memory phenotype (MP) T cells with “innate-like” functions are not well understood. Here we show that the BTB (bric-a-brac, tramtrack, broad complex) domain-containing protein promyelocytic leukemia zinc finger (PLZF) is expressed in CD44hi, but not in CD44lo, CD4+ T cells. Transgenic expression of PLZF during T cell development and in CD4+ and CD8+ T cells induced a T cell intrinsic program leading to an increase in peripheral CD44hi MP CD4+ and CD8+ T cells and a corresponding decrease of naïve CD44lo T cells. The MP CD4+ and CD8+ T cells produced IFNγ upon PMA/ionomycin stimulation, thus showing innate-like function. Changes in the naïve versus memory-like subset distribution were already evident in single-positive thymocytes, indicating PLZF-induced T cell developmental alterations. In addition, CD1d-restricted natural killer T cells in PLZF transgenic mice showed impaired development and were severely reduced in the periphery. Finally, after anti-CD3/CD28 stimulation, CD4+ transgenic T cells showed reduced IL-2 and IFNγ production but increased IL-4 secretion as a result of enhanced IL-4 production of the CD44hiCD62L+ subset. Our data indicate that PLZF is a novel regulator of the development of CD44hi MP T cells with a characteristic partial innate-like phenotype.


Sign in / Sign up

Export Citation Format

Share Document