demethylation agent
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 2)

Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1825
Author(s):  
Loraine Kay D. Cabral ◽  
Peter Andrew C. Reyes ◽  
Lory S. Crocè ◽  
Claudio Tiribelli ◽  
Caecilia H. C. Sukowati

The suppressor of cytokine signaling 1 (SOCS1) is a tumor suppressor gene found to be hypermethylated in cancers. It is involved in the oncogenic transformation of cirrhotic liver tissues. Here, we investigated the clinical relevance of SOCS1 methylation and modulation upon epigenetic therapy in diverse cellular populations of hepatocellular carcinoma (HCC). HCC clinical specimens were evaluated for SOCS1 methylation and mRNA expression. The effect of 5-Azacytidine (5-AZA), a demethylation agent, was assessed in different subtypes of HCC cells. We demonstrated that the presence of SOCS1 methylation was significantly higher in HCC compared to peri-HCC and non-tumoral tissues (52% vs. 13% vs. 14%, respectively, p < 0.001). In vitro treatment with a non-toxic concentration of 5-AZA significantly reduced DNMT1 protein expression for stromal subtype lines (83%, 73%, and 79%, for HLE, HLF, and JHH6, respectively, p < 0.01) compared to cancer stem cell (CSC) lines (17% and 10%, for HepG2 and Huh7, respectively), with the strongest reduction in non-tumoral IHH cells (93%, p < 0.001). 5-AZA modulated the SOCS1 expression in different extents among the cells. It was restored in CSC HCC HepG2 and Huh7 more efficiently than sorafenib. This study indicated the relevance of SOCS1 methylation in HCC and how cellular heterogeneity influences the response to epigenetic therapy.


2021 ◽  
Author(s):  
Bo-Cheng Yang ◽  
Meng-Shiou Lee ◽  
Ming-Kuem Lin ◽  
Wen-Te Chang

Abstract Recent studies have indicated strong connections between epigenetic modulation and secondary metabolites in plants. It is vital to understand the roles of epigenetics in the production of secondary metabolites. In this study, the DNA demethylation agent 5-azacytidine (5-Az) was used on the hairy roots of the medicinal crop Salvia miltiorrhiza to investigate its effect on secondary metabolite production, gene expression, and methylation levels in gDNA and promoter regions. Our results showed that the contents of tanshinones in S. miltiorrhiza hairy roots increased by 1.5 to 5 times, and most genes in the MEP pathway showed an upward trend. According to our NGS analysis, the methylation pattern in the copalyl diphosphate synthase (CPS) promoter was altered, and 51 out of 145 cytosines were demethylated during 5-Az treatment. A total of 36 different transcription factors (TFs) were identified in these demethylation sites. Among these TFs, NF-Y and MYB were frequently found in our results. This is the first report to demonstrate a possible mechanism of DNA methylation participating in tanshinone biosynthesis in S. miltiorrhiza hairy roots by modulating the CPS promoter and TFs.


2019 ◽  
Author(s):  
Jerome Perrard ◽  
Adrien Morel ◽  
Koceila Meznad ◽  
Philippe Paget‑Bailly ◽  
Veronique Dalstein ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yu Kong ◽  
Christopher M. Rose ◽  
Ashley A. Cass ◽  
Alexander G. Williams ◽  
Martine Darwish ◽  
...  

AbstractProfound global loss of DNA methylation is a hallmark of many cancers. One potential consequence of this is the reactivation of transposable elements (TEs) which could stimulate the immune system via cell-intrinsic antiviral responses. Here, we develop REdiscoverTE, a computational method for quantifying genome-wide TE expression in RNA sequencing data. Using The Cancer Genome Atlas database, we observe increased expression of over 400 TE subfamilies, of which 262 appear to result from a proximal loss of DNA methylation. The most recurrent TEs are among the evolutionarily youngest in the genome, predominantly expressed from intergenic loci, and associated with antiviral or DNA damage responses. Treatment of glioblastoma cells with a demethylation agent results in both increased TE expression and de novo presentation of TE-derived peptides on MHC class I molecules. Therapeutic reactivation of tumor-specific TEs may synergize with immunotherapy by inducing inflammation and the display of potentially immunogenic neoantigens.


2018 ◽  
Author(s):  
Yu Kong ◽  
Chris Rose ◽  
Ashley A. Cass ◽  
Martine Darwish ◽  
Steve Lianoglou ◽  
...  

AbstractProfound loss of DNA methylation is a well-recognized hallmark of cancer. Given its role in silencing transposable elements (TEs), we hypothesized that extensive TE expression occurs in tumors with highly demethylated DNA. We developed REdiscoverTE, a computational method for quantifying genome-wide TE expression in RNA sequencing data. Using The Cancer Genome Atlas database, we observed increased expression of over 400 TE subfamilies, of which 262 appeared to result from a proximal loss of DNA methylation. The most recurrent TEs were among the evolutionarily youngest in the genome, predominantly expressed from intergenic loci, and associated with antiviral or DNA damage responses. Treatment of glioblastoma cells with a demethylation agent resulted in both increased TE expression and de novo presentation of TE-derived peptides on MHC class I molecules. Therapeutic reactivation of tumor-specific TEs may synergize with immunotherapy by inducing both inflammation and the display of potentially immunogenic neoantigens.One Sentence SummaryTransposable element expression in tumors is associated with increased immune response and provides tumor-associated antigens


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jing Li ◽  
Wen Liu ◽  
Kui Che ◽  
Yan Zhang ◽  
Zhenzhen Zhao ◽  
...  

Epstein-Barr virus (EBV) is an important DNA virus which establishes latent infection in human malignancies. Expression of EBV-encoded genes in the associated tumors is strongly modulated by promoter CpG methylation of EBV genome. This study aimed to explore the methylation status of the promoters of EBV BamHI-A rightward frame 1 (BARF1) and BamHI-H rightward open reading frame 1 (BHRF1) and their influence on transcriptional expression, to further understand the roles of BARF1 and BHRF1 in the occurrence of EBV-associated cancer. We evaluated the methylation status of BARF1 and BHRF1 promoters in 43 EBV-associated gastric carcinoma (EBVaGC) tissues and EBV-positive cell lines. Their expressions were evaluated by real-time quantitative PCR. We found that the promoters of BARF1 and BHRF1 were methylated by varying degrees in different EBV-positive cell lines and were almost hypermethylated in all EBVaGC tissues. The methylation status of BARF1 and BHRF1 promoters were significantly reduced by 5-Aza-CdR along with the increasing gene expressions. Hypermethylation of Ap and Hp mediates the frequent silencing of BARF1 and BHRF1 in EBV-associated tumors, which could be reactivated by a demethylation agent, suggesting that promoter demethylation and activation is important for BARF1 and BHRF1 transcription and their further action.


2012 ◽  
Vol 8 (5) ◽  
pp. 798-801 ◽  
Author(s):  
Philippine Vergeer ◽  
Niels (C. A. M.) Wagemaker ◽  
N. Joop Ouborg

Inbreeding depression (i.e. negative fitness effects of inbreeding) is central in evolutionary biology, affecting numerous aspects of population dynamics and demography, such as the evolution of mating systems, dispersal behaviour and the genetics of quantitative traits. Inbreeding depression is commonly observed in animals and plants. Here, we demonstrate that, in addition to genetic processes, epigenetic processes may play an important role in causing inbreeding effects. We compared epigenetic markers of outbred and inbred offspring of the perennial plant Scabiosa columbaria and found that inbreeding increases DNA methylation. Moreover, we found that inbreeding depression disappears when epigenetic variation is modified by treatment with a demethylation agent, linking inbreeding depression firmly to epigenetic variation. Our results suggest an as yet unknown mechanism for inbreeding effects and demonstrate the importance of evaluating the role of epigenetic processes in inbreeding depression.


Sign in / Sign up

Export Citation Format

Share Document