scholarly journals Optimal emission control and identification of an unknown pollution source

2021 ◽  
Vol 2090 (1) ◽  
pp. 012142
Author(s):  
David Parra-Guevara ◽  
Yuri N. Skiba

Abstract The advection-diffusion-reaction equation is used for describing the dispersion of a quasi-passive contaminant from industrial point sources in a limited area. The conditions established on the open boundary ensure that the problem is correct in the sense of Hadamard, that is, its solution exists, is unique, and is stable to initial perturbations. The Lagrange identity is used to construct the adjoint operator and formulate an adjoint problem. Equivalent direct and adjoint estimates are derived to assess the concentration of the pollutant at monitoring sites of the area. Formulas obtained on the basis of adjoint estimates are useful in analysing the sensitivity of the model to both variations in the intensity of pollution sources and variations in the initial distribution of the pollutant concentration in the area. New optimal emission control strategies based on using the adjoint estimates are developed in order to prevent violations of existing sanitary standards by timely reduction of emission rates of operating sources. Optimal control here lies in minimizing these reductions. In addition, this control is primarily aimed at reducing the intensity of emissions from sources that most pollute the monitoring site. Also, new methods are proposed for identifying the main parameters of an unknown point source that arose as a result of a dangerous incident (accident, explosion, etc.). These methods allow determining the location and intensity of a constant or non-stationary point source, as well as the moment of emission of a pollutant in the case of an instantaneous point source. This helps to quickly assess the scale of the incident and its consequences. Numerical results show the effectiveness of the methods.

Author(s):  
Yuan Tian ◽  
Youwen Sun ◽  
Tobias Borsdorff ◽  
Cheng Liu ◽  
Ting Liu ◽  
...  

Abstract This work demonstrates for the first time the capability of Tropospheric Monitoring Instrument (TROPOMI) routine operations to quantify CO emission rates down to industrial point sources. We have quantified CO emission rates of four industrial point sources in Asia (i.e., Qianlishan industrial park (39.9°N, 106.9°E), Jiuyuan industrial park (40.7°N, 109.7°E) and Botian industrial park (42.2°N, 125.2°E) in China, and Jindal Factory (15.2°N, 76.7°E) in India) with TROPOMI CO observations from 2017 to 2020. The Qianlishan industrial park is a missing source in emission inventory and we quantify it to be ~14.0 kg/s. Our estimates for other three sources vary over 14.4 to 34.3 kg/s, which are within 37–69% of the inventory values. The plume inversion methods are presented in a manner that can be easily used to other fine-scale emission plumes observed from space. Though only a small number of CO plumes per year for any given industrial point source can be observed in conditions suitable for emission rates estimation, there are many industrial point sources can be captured by a good TROPOMI footprint. This work affirms that a constellation of future CO satellites could monitor individual CO point source emissions to support environment policy.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 101-110 ◽  
Author(s):  
W. v. d. Emde ◽  
H. Fleckseder ◽  
N. Matsché ◽  
F. Plahl-Wabnegg ◽  
G. Spatzierer ◽  
...  

Neusiedlersee (in German) / Fertö tó (in Hungarian) is a shallow lake at the Austro-Hungarian border. In the late 1970s, the question arose what to do in order to protect the lake against eutrophication. A preliminary report established the need for point-source control as well as gave first estimates for non-point source inputs. The proposed point-source control was quickly implemented, non-point sources were - among other topics - studied in detail in the period 1982 - 1986. The preliminary work had shown, based on integrated sampling and data from literature, that the aeolic input outweighed the one via water erosion (work was for totP only). In contrast to this, the 1982 - 1986 study showed that (a) water erosion by far dominates over aeolic inputs and (b) the size of nonpoint-source inputs was assessed for the largest catchment area in pronounced detail, whereas additional estimates were undertaken for smaller additional catchment areas. The methods as well as the results are presented in the following. The paper concludes with some remarks on the present management practice of nonpoint-source inputs.


2014 ◽  
Vol 14 (17) ◽  
pp. 8849-8868 ◽  
Author(s):  
Y. Zhao ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants (volatile organic compounds, NH3 and CO, etc.) and taking account of more diverse environmental impacts is also urgently needed.


2001 ◽  
Author(s):  
J. C. Dettling ◽  
M. Larkin ◽  
J. Adomaitis ◽  
M. Galligan

1998 ◽  
Vol 38 (10) ◽  
pp. 165-172 ◽  
Author(s):  
Ruochuan Gu ◽  
Mei Dong

The conventional method for waste load allocations (WLA) employs spatial-differentiation, considering individual point sources, and temporal-integration, using a constant flow, typically 7Q10 low flow. This paper presents a watershed-based seasonal management approach, in which non-point source as well as point sources are incorporated, seasonal design flows are used for water quality analysis, and WLA are performend in a watershed scale. The strategy for surface water quality modeling in the watershed-based approach is described. The concept of seasonal discharge management is discussed and suggested for the watershed-based approach. A case study using the method for the Des Moines River, Iowa, USA is conducted. Modeling considerations and procedure are presented. The significance of non-point source pollutant load and its impact on water quality of the river is evaluated by analyzing field data. A water quality model is selected and validated against field measurements. The model is applied to projections of future water quality situations under different watershed management and water quality control scenarios with respect to river flow and pollutant loading rate.


2009 ◽  
Vol 76 (3) ◽  
pp. 724-732 ◽  
Author(s):  
Amir M. Abdelzaher ◽  
Mary E. Wright ◽  
Cristina Ortega ◽  
Helena M. Solo-Gabriele ◽  
Gary Miller ◽  
...  

ABSTRACT Swimming in ocean water, including ocean water at beaches not impacted by known point sources of pollution, is an increasing health concern. This study was an initial evaluation of the presence of indicator microbes and pathogens and the association among the indicator microbes, pathogens, and environmental conditions at a subtropical, recreational marine beach in south Florida impacted by non-point sources of pollution. Twelve water and eight sand samples were collected during four sampling events at high or low tide under elevated or reduced solar insolation conditions. The analyses performed included analyses of fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli, enterococci, and Clostridium perfringens), human-associated microbial source tracking (MST) markers (human polyomaviruses [HPyVs] and Enterococcus faecium esp gene), and pathogens (Vibrio vulnificus, Staphylococcus aureus, enterovirus, norovirus, hepatitis A virus, Cryptosporidium spp., and Giardia spp.). The enterococcus concentrations in water and sand determined by quantitative PCR were greater than the concentrations determined by membrane filtration measurement. The FIB concentrations in water were below the recreational water quality standards for three of the four sampling events, when pathogens and MST markers were also generally undetectable. The FIB levels exceeded regulatory guidelines during one event, and this was accompanied by detection of HPyVs and pathogens, including detection of the autochthonous bacterium V. vulnificus in sand and water, detection of the allochthonous protozoans Giardia spp. in water, and detection of Cryptosporidium spp. in sand samples. The elevated microbial levels were detected at high tide and under low-solar-insolation conditions. Additional sampling should be conducted to further explore the relationships between tidal and solar insolation conditions and between indicator microbes and pathogens in subtropical recreational marine waters impacted by non-point source pollution.


Sign in / Sign up

Export Citation Format

Share Document