stressed field
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 281
Author(s):  
Ehab S. A. Moustafa ◽  
Mohamed M. A. Ali ◽  
Mohamed M. Kamara ◽  
Mohamed F. Awad ◽  
Abdallah A. Hassanin ◽  
...  

Salinity in soil or irrigation water requires developing genetically salt-tolerant genotypes, especially in arid regions. Developing salt-tolerant and high-yielding wheat genotypes has become more urgent in particular with continuing global population growth and abrupt climate changes. The current study aimed at investigating the genetic variability of new breeding lines in three advanced generations F6–F8 under salinity stress. The evaluated advanced lines were derived through accurate pedigree selection under actual saline field conditions (7.74 dS/m) and using saline water in irrigation (8.35 dS/m). Ninety-four F6 lines were evaluated in 2017–2018 and reduced by selection to thirty-seven F7 lines in 2018–2019 and afterward to thirty-four F8 lines in 2019–2020 based on grain yield and related traits compared with adopted check cultivars. Significant genetic variability was detected for all evaluated agronomic traits across generations in the salt-stressed field. The elite F8 breeding lines displayed higher performance than the adopted check cultivars. These lines were classified based on yield index into four groups using hierarchical clustering ranging from highly salt-tolerant to slightly salt-tolerant genotypes, which efficiently enhance the narrow genetic pool of salt-tolerance. The detected response to selection and high to intermediate broad-sense heritability for measured traits displayed their potentiality to be utilized through advanced generations under salinity stress for identifying salt-tolerant breeding lines.


Aerospace ◽  
2020 ◽  
Vol 7 (7) ◽  
pp. 88
Author(s):  
Antonio Chiariello ◽  
Salvatore Orlando ◽  
Pasquale Vitale ◽  
Mauro Linari ◽  
Raffaele Longobardi ◽  
...  

In the framework of fast rotorcraft, smoothness and flushness of external aerodynamic surfaces present challenges for high-speed conditions, where aerodynamics is the driver of helicopter performance. For AIRBUS-RACER helicopter the main landing gear trap doors are parts of the lower wing skins (in retracted configuration) affecting helicopter performance by minimizing the drag. Flushness requirements must not be in contrast with the functionally of the Landing gear system that must open and close the doors during the landing gear retraction-extension phases at moderately low velocity. To manage these goals, a novel design logic has been identified to support the trap doors development phase. The identified way to proceed needs of relevant numerical method and tool as well. This method is aimed at identifying the main landing gear composite compartment doors in pre-shaped configuration to match the smoothness and door-stopper engagements over each aerodynamic conditions. The authors propose a detailed non-linear Finite Element method, based on MSC Nastran (MSC Software, Newport Beach, US) SOL-400 solver in which the structure is modelled with deformable contact bodies in a multiple load step sequence, open door condition and pre-shaped, deformed under actuator pre-load, under flight load conditions. The method includes the entire pre-stressed field due to the preload and the actual door stiffness, considering the achieved large displacement to verify the most representative strain field during loads application. The paper defines a robust methodology to predict the deformation and ensure the most appropriate door “pre-bow” and pre-load, in order to achieve the desiderated structural shape that matches aerodynamic requirements. The main result is the identification of a pre-shaped doors configuration for the Airbus RACER Fast Rotorcraft.


2018 ◽  
Vol 148 ◽  
pp. 1-11 ◽  
Author(s):  
Verónica V. Ergo ◽  
Ramiro Lascano ◽  
Claudia R.C. Vega ◽  
Rodrigo Parola ◽  
Constanza S. Carrera

Author(s):  
Mousumi Das ◽  
Saby Asachi Kundagrami

Genetic improvement through induced mutation has been very effective in improvement of crops. Seeds of three popular chickpea variety namely BGM 408, B115 and JG 315 were treated with 10,20 and 30 kR of gamma rays. Then treated seeds with their respective control(0 kR gamma rays) were sown in the field of Calcutta University experimental farm,Baruipur (with no salinity) in three consecutive years to raise M1, M2 and M3 generations respectively.Some M3 lines having higher yield potential were subjected to grow as M4 lines in salt stressed field (5-7ds m-1) of Hingalganj,South 24 Parganas. Finally, some promising salt tolerant lines with improved seed yield were selected which have a good promise for coastal saline belt after releasing as a variety.


2015 ◽  
Vol 397 (1-2) ◽  
pp. 213-225 ◽  
Author(s):  
M. Liakat Ali ◽  
Jon Luetchens ◽  
Josiel Nascimento ◽  
Timothy M. Shaver ◽  
Greg R. Kruger ◽  
...  

1999 ◽  
Vol 124 (1) ◽  
pp. 46-51 ◽  
Author(s):  
Anthony W. Whiley ◽  
Christopher Searle ◽  
Bruce Schaffer ◽  
B. Nigel Wolstenholme

Leaf gas exchange of avocado (Persea americana Mill.) and mango (Mangifera indica L.) trees in containers and in an orchard (field-grown trees) was measured over a range of photosynthetic photon fluxes (PPF) and ambient CO2 concentrations (Ca). Net CO2 assimilation (A) and intercellular partial pressure of CO2 (Ci) were determined for all trees in early autumn (noncold-stressed leaves) when minimum daily temperatures were ≥14 °C, and for field-grown trees in winter (cold-stressed leaves) when minimum daily temperatures were ≤10 °C. Cold-stressed trees of both species had lower maximum CO2 assimilation rates (Amax), light saturation points (QA), CO2 saturation points (CaSAT) and quantum yields than leaves of noncold-stressed, field-grown trees. The ratio of variable to maximum fluorescence (Fv/Fm) was ≈50% lower for leaves of cold-stressed, field-grown trees than for leaves of nonstressed, field-grown trees, indicating chill-induced photoinhibition of leaves had occurred in winter. The data indicate that chill-induced photoinhibition of A and/or sink limitations caused by root restriction in container-grown trees can limit carbon assimilation in avocado and mango trees.


Sign in / Sign up

Export Citation Format

Share Document