scholarly journals Microlensing and photon bunching: the impact of decoherence

2019 ◽  
Vol 491 (4) ◽  
pp. 5789-5792
Author(s):  
Geraint F Lewis ◽  
Peter Tuthill

ABSTRACT Gravitational microlensing within the Galaxy offers the prospect of probing the details of distant stellar sources, as well as revealing the distribution of compact (and potentially non-luminous) masses along the line of sight. Recently, it has been suggested that additional constraints on the lensing properties can be determined through the measurement of the time delay between images through the correlation of the bunching of photon arrival times; an application of the Hanbury–Brown Twiss effect. In this paper, we revisit this analysis, examining the impact of decoherence of the radiation from a spatially extended source along the multiple paths to an observer. The result is that, for physically reasonable situations, such decoherence completely erases any correlation that could otherwise be used to measure the gravitational lensing time delay. Indeed, the divergent light paths traverse extremely long effective baselines at the lens plane, corresponding to extremes of angular resolving power well beyond those attainable with any terrestrial technologies; the drawback being that few conceivable celestial objects would be sufficiently compact with high enough surface brightness to yield usable signals.

2018 ◽  
Vol 613 ◽  
pp. A15 ◽  
Author(s):  
Patrick Simon ◽  
Stefan Hilbert

Galaxies are biased tracers of the matter density on cosmological scales. For future tests of galaxy models, we refine and assess a method to measure galaxy biasing as a function of physical scalekwith weak gravitational lensing. This method enables us to reconstruct the galaxy bias factorb(k) as well as the galaxy-matter correlationr(k) on spatial scales between 0.01hMpc−1≲k≲ 10hMpc−1for redshift-binned lens galaxies below redshiftz≲ 0.6. In the refinement, we account for an intrinsic alignment of source ellipticities, and we correct for the magnification bias of the lens galaxies, relevant for the galaxy-galaxy lensing signal, to improve the accuracy of the reconstructedr(k). For simulated data, the reconstructions achieve an accuracy of 3–7% (68% confidence level) over the abovek-range for a survey area and a typical depth of contemporary ground-based surveys. Realistically the accuracy is, however, probably reduced to about 10–15%, mainly by systematic uncertainties in the assumed intrinsic source alignment, the fiducial cosmology, and the redshift distributions of lens and source galaxies (in that order). Furthermore, our reconstruction technique employs physical templates forb(k) andr(k) that elucidate the impact of central galaxies and the halo-occupation statistics of satellite galaxies on the scale-dependence of galaxy bias, which we discuss in the paper. In a first demonstration, we apply this method to previous measurements in the Garching-Bonn Deep Survey and give a physical interpretation of the lens population.


2020 ◽  
Vol 492 (3) ◽  
pp. 4268-4282 ◽  
Author(s):  
Adam Soussana ◽  
Nora Elisa Chisari ◽  
Sandrine Codis ◽  
Ricarda S Beckmann ◽  
Yohan Dubois ◽  
...  

ABSTRACT The intrinsic correlations of galaxy shapes and orientations across the large-scale structure of the Universe are a known contaminant to weak gravitational lensing. They are known to be dependent on galaxy properties, such as their mass and morphologies. The complex interplay between alignments and the physical processes that drive galaxy evolution remains vastly unexplored. We assess the sensitivity of intrinsic alignments (shapes and angular momenta) to active galactic nuclei (AGN) feedback by comparing galaxy alignment in twin runs of the cosmological hydrodynamical Horizon simulation, which do and do not include AGN feedback, respectively. We measure intrinsic alignments in three dimensions and in projection at $z$ = 0 and $z$ = 1. We find that the projected alignment signal of all galaxies with resolved shapes with respect to the density field in the simulation is robust to AGN feedback, thus giving similar predictions for contamination to weak lensing. The relative alignment of galaxy shapes around galaxy positions is however significantly impacted, especially when considering high-mass ellipsoids. Using a sample of galaxy ‘twins’ across simulations, we determine that AGN changes both the galaxy selection and their actual alignments. Finally, we measure the alignments of angular momenta of galaxies with their nearest filament. Overall, these are more significant in the presence of AGN as a result of the higher abundance of massive pressure-supported galaxies.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Haotian Liu ◽  
Junji Jia

AbstractGravitational lensing can happen not only for null signals but also timelike signals such as neutrinos and massive gravitational waves in some theories beyond GR. In this work we study the time delay between different relativistic images formed by signals with arbitrary asymptotic velocity v in general static and spherically symmetric spacetimes. A perturbative method is used to calculate the total travel time in the strong field limit, which is found to be a quasi-power series of the small parameter $$a=1-b_c/b$$ a = 1 - b c / b where b is the impact parameter and $$b_c$$ b c is its critical value. The coefficients of the series are completely fixed by the behaviour of the metric functions near the particle sphere $$r_c$$ r c and only the first term of the series contains a weak logarithmic divergence. The time delay $$\Delta t_{n,m}$$ Δ t n , m to the leading non-trivial order was shown to equal the particle sphere circumference divided by the local signal velocity and multiplied by the winding number and the redshift factor. By assuming the Sgr A* supermassive black hole is a Hayward one, we were able to validate the quasi-series form of the total time, and reveal the effects of the spacetime parameter l, the signal velocity v and the source/detector coordinate difference $$\Delta \phi _{sd}$$ Δ ϕ sd on the time delay. It is found that as l increases from 0 to its critical value $$l_c$$ l c , both $$r_c$$ r c and $$\Delta t_{n,m}$$ Δ t n , m decrease. The variation of $$\Delta t_{n+1,n}$$ Δ t n + 1 , n for l from 0 to $$l_c$$ l c can be as large as $$7.2\times 10^1$$ 7.2 × 10 1 [s], whose measurement then can be used to constrain the value of l. While for ultra-relativistic neutrino or gravitational wave, the variation of $$\Delta t_{n,m}$$ Δ t n , m is too small to be resolved. The dependence of $$\Delta t_{n,-n}$$ Δ t n , - n on $$\Delta \phi _{sd}$$ Δ ϕ sd shows that to temporally resolve the two sequences of images from opposite sides of the lens, $$|\Delta \phi _{sd}-\pi |$$ | Δ ϕ sd - π | has to be larger than a certain value, or equivalently if $$|\Delta \phi _{sd}-\pi |$$ | Δ ϕ sd - π | is small, the time resolution of the observatories has to be good.


2011 ◽  
Vol 10 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Thomas W. Hair

AbstractMany reasons for why extraterrestrial intelligences might avoid communications with our civilization have been proposed. One possible scenario is that all civilizations follow the lead of some particularly distinguished civilization. This paper will examine the impact the first successful civilization could have on all other subsequent civilizations within its sphere of influence and the ramifications of this as it relates to the Fermi Paradox. Monte Carlo simulation is used to map the inter-arrival times of early civilizations and to highlight the immense epochs of time that the earliest civilizations could have had the Galaxy to themselves.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 822-824
Author(s):  
Patrick Kelly

AbstractIn 1964, Sjur Refsdal first considered the possibility that the light from a background supernova could traverse multiple paths around a strong gravitational lens towards us. He showed that the arrival times of the supernova's light would depend on the cosmic expansion rate, as well as the distribution of matter in the lens. I discussed the discovery of the first such multiply imaged supernova, which exploded behind the MACS J1149.6+2223 galaxy cluster. We have obtained Hubble Space Telescope grism and ground-based spectra of the four images of the supernova, which form an Einstein Cross configuration around an elliptical cluster member. These spectra as well as rest-frame optical light curves have allowed us to learn about the properties of the peculiar core-collapse supernova explosion, which occurred 4.3 Gyr after the Bang Bang, and contain information about the lenses matter distribution as well as their stellar populations. A delayed image of the supernova is expected close to the galaxy cluster center as early as this Fall, and will serve as an unprecedented probe of the potential of a massive galaxy cluster.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Haotian Liu ◽  
Junji Jia

AbstractTotal travel time t and time delay $$\Delta t$$ Δ t between images of gravitational lensing (GL) in the equatorial plane of stationary axisymmetric (SAS) spacetimes for null and timelike signals with arbitrary velocity are studied. Using a perturbative method in the weak field limit, t in general SAS spacetimes is expressed as a quasi-series of the impact parameter b with coefficients involving the source-lens distance $$r_s$$ r s and lens-detector distances$$r_d$$ r d , signal velocity v, and asymptotic expansion coefficients of the metric functions. The time delay $$\Delta t$$ Δ t to the leading order(s) were shown to be determined by the spacetime mass M, spin angular momentum a and post-Newtonian parameter $$\gamma $$ γ , and kinematic variables $$r_s,~r_d,~v$$ r s , r d , v and source angular position $$\beta $$ β . When $$\beta \ll \sqrt{aM}/r_{s,d}$$ β ≪ aM / r s , d , $$\Delta t$$ Δ t is dominated by the contribution linear to spin a. Modeling the Sgr A* supermassive black hole as a Kerr–Newman black hole, we show that as long as $$\beta \lesssim 1.5\times 10^{-5}$$ β ≲ 1.5 × 10 - 5 [$$^{\prime \prime }$$ ″ ], then $$\Delta t$$ Δ t will be able to reach the $$\mathcal {O}(1)$$ O ( 1 ) second level, which is well within the time resolution of current GRB, gravitational wave and neutrino observatories. Therefore measuring $$\Delta t$$ Δ t in GL of these signals will allow us to constrain the spin of the Sgr A*.


2019 ◽  
Vol 624 ◽  
pp. A54 ◽  
Author(s):  
Peter Schneider

We consider several aspects of the generalized multi-plane gravitational lens theory, in which light rays from a distant source are affected by several main deflectors, and in addition by the tidal gravitational field of the large-scale matter distribution in the Universe when propagating between the main deflectors. Specifically, we derive a simple expression for the time-delay function in this case, making use of the general formalism for treating light propagation in inhomogeneous spacetimes which leads to the characterization of distance matrices between main lens planes. Applying Fermat’s principle, an alternative form of the corresponding lens equation is derived, which connects the impact vectors in three consecutive main lens planes, and we show that this form of the lens equation is equivalent to the more standard one. For this, some general relations for cosmological distance matrices are derived. The generalized multi-plane lens situation admits a generalized mass-sheet transformation, which corresponds to uniform isotropic scaling in each lens plane, a corresponding scaling of the deflection angle, and the addition of a tidal matrix (mass sheet plus external shear) to each main lens. The scaling factor in the lens planes exhibits a curious alternating behavior for odd and even numbered planes. We show that the time delay for sources in all lens planes scale with the same factor under this generalized mass-sheet transformation, thus precluding the use of time-delay ratios to break the mass-sheet transformation.


2020 ◽  
Vol 15 (S359) ◽  
pp. 188-189
Author(s):  
Daniela Hiromi Okido ◽  
Cristina Furlanetto ◽  
Marina Trevisan ◽  
Mônica Tergolina

AbstractGalaxy groups offer an important perspective on how the large-scale structure of the Universe has formed and evolved, being great laboratories to study the impact of the environment on the evolution of galaxies. We aim to investigate the properties of a galaxy group that is gravitationally lensing HELMS18, a submillimeter galaxy at z = 2.39. We obtained multi-object spectroscopy data using Gemini-GMOS to investigate the stellar kinematics of the central galaxies, determine its members and obtain the mass, radius and the numerical density profile of this group. Our final goal is to build a complete description of this galaxy group. In this work we present an analysis of its two central galaxies: one is an active galaxy with z = 0.59852 ± 0.00007, while the other is a passive galaxy with z = 0.6027 ± 0.0002. Furthermore, the difference between the redshifts obtained using emission and absorption lines indicates an outflow of gas with velocity v = 278.0 ± 34.3 km/s relative to the galaxy.


2002 ◽  
Vol 568 (2) ◽  
pp. 488-499 ◽  
Author(s):  
Masamune Oguri ◽  
Atsushi Taruya ◽  
Yasushi Suto ◽  
Edwin L. Turner

Sign in / Sign up

Export Citation Format

Share Document