Challenges of Engineering the Hottest Subsea Heated Pipeline for the CRISP Project

2021 ◽  
Author(s):  
Christian Geertsen ◽  
Steve Langford ◽  
Colin McKinnon ◽  
Fred McKinnon ◽  
Vicki Niesen ◽  
...  

Objectives/Scope The project was a 2km, electrically heat-traced, subsea pipe-in-pipe (PIP) system for transportation of a bitumen-like material across a shipping channel. Due to the viscosity of the bitumen, it must be transported at a minimum of 160°C; has a normal pipeline operating temperature of 200°C; and a design temperature is 228°C. Methods, Procedures, Process Due to the high operating temperature, pre-stressing and backfilling the PIP was required to lock in stresses at an intermediate pre-stressing temperature. The electrical heat-trace wires (installed to heat up the inner pipe and prevent setting of the bitumen during cooldowns) were used to achieve this pre-stressing during the fabrication process. The heating schedule causes high stress levels and require advanced engineering analyses to model the behaviour of the inner and outer pipe during the fabrication, installation, pre-stressing, and operation. The complex loading history of the inner pipe and the expansion spools was included in the global 3D, finite element (FE) models that were used to validate the pipeline profile, backfilling, pre-stressing temperature, and sequence of operations. Results, Observations, Conclusions The complex buckling behaviour of the inner pipe is presented and shown to be within DNV GL OS-F- 101 code limits. The end expansion during the various stages of pre-stressing is presented and compared to observed behaviour. The loads and stresses in the bulkheads are presented and shown to be acceptable. The analysis demonstrates that the pipeline system can be safely installed and operated up to the maximum design temperature of 228°C. Novel/Additive Information The project used pre-stressing by heating the inner pipe to an intermediate temperature before coupling the inner pipe to the outer pipe. The purpose of the pre-stressing was to manage the high axial stresses making it feasible to achieve the high design temperature of 228°C. Pre-expanding of the expansion spools at either end of the subsea pipelines was also used due to the space limitations. Innovative engineering analysis and construction methods were used to ensure the integrity of the inner pipe during the pre-stressing process and operation.

Author(s):  
Timur Ergen

This chapter brings together arguments from economics, sociology, and political economy to show that innovation processes are characterized by a dilemma between the advantages of aligned expectations—including greater coordination and investment—and those of diversity, including superior openness to new technological possibilities. To illustrate the argument, the chapter discusses a historical case involving one of the largest coordinated peace-time attempts to hasten technological innovation in the history of capitalism, namely the US energy technology policies of the 1970s and 1980s. Close examination of the commercialization of photovoltaics and synthetic fuel initiatives illustrates both sides of the dilemma between shared versus diverse expectations in innovation: coordination but possible premature lock-in on the one hand, and openness but possible stagnation on the other. The chapter shows that even the exploration and interpretation of new technologies may be as much a product of focused investment as of trial-and-error search.


1987 ◽  
Vol 20 (1) ◽  
pp. 18-25
Author(s):  
P Gilbert

The transmission and distribution system operated by British Gas plc is the largest integrated pipeline system in Europe. The whole system comprises a national transmission system which carries gas from five terminals to the twelve gas regions. Each region in turn carries the gas through a regional transmission system into a distribution grid and thence onto its customers. The national, regional and distribution system all present the instrument engineer with different technical challenges because of the way in which they have been built and are operated, however, it is simplest to characterise them by their process conditions. The operating pressure is highest in the national transmission system being up to 75 bar, in the regional transmission system the pressure is usually less than 37 bar, and in the distribution grid it is less than 7 bar. In general, the pipe diameters decrease from the national system downwards, and the measured flowrates are lowest in the distribution grids. This paper is concerned only with instrumentation on the national transmission system. The discussion will cover current technology which is typical of that being installed at present, and concentrates on the more commonly found instrumentation. The paper begins with a brief history of development of the national transmission system and a description of how it is operated. This is followed by a discussion on the application of computers to the control of unmanned installations. A section concerning the measurement of pressure and its application to the control of the system comes next. The main part of the paper contains an analysis of high accuracy flowmetering and the paper concludes with some comments on developments in instrumentation and their application to changing operation of the national transmission system.


Author(s):  
Dale Millward

Effective pipeline design and regular maintenance can assist in prolonging the lifespan of subsea pipelines, however the presence of marine vessels can significantly increase the risk of pipeline damage from anchor hazards. As noted in the Health and Safety Executive – Guideline for Pipeline Operators on Pipeline Anchor Hazards 2009. “Anchor hazards can pose a significant threat to pipeline integrity. The consequences of damage to a pipeline could include loss of life, injury, fire, explosion, loss of buoyancy around a vessel and major pollution”. This paper will describe state of the art pipeline isolation tooling that enables safe modification of pressurised subsea pipelines. Double Block and Bleed (DBB) isolation tools have been utilised to greatly reduce downtime, increase safety and maximise unplanned maintenance, providing cost-effective solutions to the end user. High integrity isolation methods, in compliance with international subsea system intervention and isolation guidelines (IMCA D 044 / IMCA D 006), that enable piggable and unpiggable pipeline systems to be isolated before any breaking of containment, will also be explained. This paper will discuss subsea pipeline damage scenarios and repair options available to ensure a safe isolation of the pipeline and contents in the event of an incident DNV GL type approved isolation technology enables the installation of a fail-safe, DBB isolation in the event of a midline defect. The paper will conclude with case studies highlighting challenging subsea pipeline repair scenarios successfully executed, without depressurising the entire pipeline system, and in some cases without shutting down or interrupting production.


2019 ◽  
Vol 7 (11) ◽  
pp. 401 ◽  
Author(s):  
Zhaohui Hong ◽  
Dengfeng Fu ◽  
Wenbin Liu ◽  
Zefeng Zhou ◽  
Yue Yan ◽  
...  

Subsea pipelines are commonly employed in the offshore oil and gas industry to transport high-pressure and high-temperature (HPHT) hydrocarbons. The phenomenon of pipeline walking is a topic that has drawn a great deal of attention, and is related to the on-bottom stability of the pipeline, such as directional accumulation with respect to axial movement, which can threaten the security of the entire pipeline system. An accurate assessment of pipeline walking is therefore necessary for offshore pipeline design. This paper reports a comprehensive suite of numerical analyses investigating the performance of pipeline walking, with a focus on the effect of increasing axial soil resistance on walking rates. Three walking-driven modes (steel catenary riser (SCR) tension, downslope, and thermal transient) are considered, covering a wide range of influential parameters. The variation in walking rate with respect to the effect of increased soil friction is well reflected in the development of the effective axial force (EAF) profile. A method based on the previous analytical solution is proposed for predicting the accumulated walking rates throughout the entire service life, where the concept of equivalent soil friction is adopted.


Author(s):  
G. F. Cataford ◽  
R. P. Lancee

Oil entrainment in the natural gas stream together with maintenance associated with oil systems have been long standing problems in booster compressors on a natural gas pipeline system. The use of dry gas shaft seals and active magnetic bearings will effectively eliminate the use of oil systems in gas compression. The paper will deal with the history of TransCanada PipeLines’ past experiences with oil eliminating devices, the theory of dry gas seals and magnetic bearings, the effects on rotor dynamics of magnetic bearings and the recent installation of a set of seals and bearings in a booster compressor unit, in service on the TransCanada PipeLines system.


Author(s):  
Garry L. Sommer ◽  
Brad S. Smith

Enbridge Pipelines Inc. operates one of the longest and most complex pipeline systems in the world. A key aspect of the Enbridge Integrity Management Program (IMP) is the trending, analysis, and management of data collected from over 50 years of pipeline operations. This paper/presentation describes Enbridge’s challenges, learnings, processes, and innovations for meeting today’s increased data management/integration demands. While much has been written around the premise of data management/integration, and many software solutions are available in the commercial market, the greatest data management challenge for mature pipeline operators arises from the variability of data (variety of technologies, data capture methods, and data accuracy levels) collected over the operating history of the system. Ability to bring this variable data set together is substantially the most difficult aspect of a coordinated data management effort and is critical to the success of any such project. Failure to do this will result in lack of user confidence and inability to gain “buy-in” to new data management processes. In 2001 Enbridge began a series of initiatives to enhance data management and analysis. Central to this was the commitment to accurate geospatial alignment of integrity data. This paper/presentation describes Enbridge’s experience with development of custom software (Integrated Spatial Analysis System – ISAS) including critical learnings around a.) Data alignment efforts and b.) Significant efforts involved in development of an accurate pipe centreline. The paper/presentation will also describe co-incident data management programs that link to ISAS. This includes enhanced database functionality for excavation data and development of software to enable electronic transfer of data to this database. These tools were built to enable rapid transfer of field data and “real time” tool validation through automated unity plots of tool defect data vs. that measured in the field.


Author(s):  
Mitul Dalal ◽  
Jorge Penso ◽  
Dave Dewees ◽  
Robert Brown

Abstract Creep is progressive deformation of material over an extended period when exposed to elevated temperature and stresses below the yield strength. Poor Creep ductility and cracking can be a problem above 900 °F (482°C) in the HAZ of low alloy (Cr-Mo) steel. High stress areas, including supports, hangers and fittings are more vulnerable to cracking. Creep cracking has occurred in longitudinal pipe welds with excessive peaking or welds with poor quality. Numerous incidents of cracking in low alloy (Cr-Mo) steel have been reported in the power industry and in refineries with major concern in longitudinal seam welds as well as highly stressed welds in reactors-heaters interconnecting piping. This paper presents the results of an assessment performed on reactors-heaters interconnecting piping in a catalytic reformer unit with a maximum operating temperature of about 950 °F (510 °C) at 250 psig (1.7 MPa) (> 40 years in-service). Comprehensive inspection including visual, dye penetrant testing, thickness measurements and peaking measurements have been performed. Phased Array Ultrasonic Testing (PAUT) was utilized to detect crack-like defects and flaws. Detailed pipe stress analysis and finite element analyses (FEA) were also performed.


Author(s):  
Mohammad Parsazadeh ◽  
Xili Duan

Flow assurance is critical in offshore oil and gas production. Thermal insulation is an effective way to reduce heat loss from subsea pipelines and avoid the formation of hydrates or wax deposits that could block the flowlines. This paper presents heat transfer analysis from a subsea flowline with different insulation materials, particularly with nano-enhanced phase change materials (NPCMs) that allow thermal energy storage in the pipeline system. The phase change materials (PCMs) can effectively regulate fluid temperature during production fluctuations or increase the cool-down time during production shutdown. This paper considers a pipe in pipe configuration with different insulation methods; the cool-down times are calculated and compared. The results show that thermal insulation can greatly delay the fluid cool-down process. A significant improvement of cool-down time can be achieved with PCM energy storage under a good conventional insulation layer. Moreover, with nanoparticles in a PCM, the latent energy storage is enhanced thus it takes even longer time for the internal fluid to reach its hydrate formation temperature.


Author(s):  
Don R. Edwards

For the first time in the history of the ASA [1], ANSI/ASME, ASME/ANSI, to the 2008 edition of ASME B31.3 Process Piping Code (hereafter referred to as “the Code”) [2], an equation for the Stress Due To Sustained Loads, SL, has been introduced into the Code. From its inception to the current edition, the Code has remained ambiguous in several areas. Even though the displacement stress range, SE, has been explicitly defined by both text and equation, the stress due to sustained loads, SL, is mentioned not with an explicit equation but with a statement that SL shall be limited by the allowable stress at the corresponding operating temperature, Sh. This paper describes the equation in detail and the background, the events, and the effort involved that led to the insertion of this equation into the Code.


1999 ◽  
Vol 121 (2) ◽  
pp. 151-155 ◽  
Author(s):  
I. Demir ◽  
A. N. Gulluoglu

For an understanding failure behavior of crystalline solids, considerable interest is given to investigating interaction effects between the main crack and microcracks in the presence of mobile dislocations. Accurate analysis of these types of interaction problems may lead to accurate models for failure prevention and the history of plastic zone development. High stress concentration areas such as crack tips are the places where dislocations are subjected to higher forces. Therefore, a computer simulation technique based on dislocation dynamics has been developed to investigate the movement of dislocations in the presence of multiple cracks. Dislocation structures, dislocation distribution and strain rate results are presented as functions of applied stresses for different microcrack positions and orientations. Simulation results give a reasonable description of dislocation pattern development during deformation around the cracks and explain the shape and development of the plastic zone.


Sign in / Sign up

Export Citation Format

Share Document