Journal of Aerodynamics
Latest Publications


TOTAL DOCUMENTS

8
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By Hindawi Limited

2314-6206, 2356-7139

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
K. Mulleners ◽  
P. Gilge ◽  
S. Hohenstein

Roughened aeroengine blade surfaces lead to increased friction losses and reduced efficiency of the individual blades. The surface roughness also affects the wake flow of the blade and thus the inflow conditions for the subsequent compressor or turbine stage. To investigate the impact of surface roughness on a turbulent blade wake, we conducted velocity field measurements by means of stereo particle image velocimetry in the wake of a roughened turbine blade in a linear cascade wind tunnel. The turbine blade was roughened at different chordwise locations. The influence of the chordwise location of the added surface roughness was examined by comparing their impact on the width and depth of the wake and, the positions and distribution of vortical structures in the wake. Additionally, the friction loss coefficients for different surface roughness positions were estimated directly from the velocity field.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yilei He ◽  
Qiulin Qu ◽  
Ramesh K. Agarwal

This paper employs a multiobjective genetic algorithm (MOGA) to optimize the shape of a widely used wing in ground (WIG) aircraft airfoil NACA 4412 to improve its lift and drag characteristics, in particular to achieve two objectives, that is, to increase its lift and its lift to drag ratio. The commercial software ANSYS FLUENT is employed to calculate the flow field on an adaptive structured mesh generated by ANSYS ICEM software using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a one equation Spalart-Allmaras (SA) turbulence model. The results show significant improvement in both the lift coefficient and lift to drag ratio of the optimized airfoil compared to the original NACA 4412 airfoil. It is demonstrated that the performance of a wing in ground (WIG) aircraft can be improved by using the optimized airfoil.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Qiuying Zhao ◽  
Chunhua Sheng ◽  
Abdollah Afjeh

Aerodynamic interactions of the model NREL 5 MW offshore horizontal axis wind turbines (HAWT) are investigated using a high-fidelity computational fluid dynamics (CFD) analysis. Four wind turbine configurations are considered; three-bladed upwind and downwind and two-bladed upwind and downwind configurations, which operate at two different rotor speeds of 12.1 and 16 RPM. In the present study, both steady and unsteady aerodynamic loads, such as the rotor torque, blade hub bending moment, and base the tower bending moment of the tower, are evaluated in detail to provide overall assessment of different wind turbine configurations. Aerodynamic interactions between the rotor and tower are analyzed, including the rotor wake development downstream. The computational analysis provides insight into aerodynamic performance of the upwind and downwind, two- and three-bladed horizontal axis wind turbines.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Chin-Cheng Chou ◽  
Kung-Ming Chung ◽  
Keh-Chin Chang

For applications of solar thermal energy, solar water heaters (SWHs) are becoming common. In this study, the effect of a crosswind on the aerodynamic characteristics of residential (an inclined flat plate with a horizontal cylinder) and large-scale SWHs (an inclined flat plate only) is experimentally investigated. The tests are conducted in a low speed wind tunnel and the relative wind direction with respect to the test model, β, ranges from 0 to 135 deg. Measurements of the mean and fluctuating pressures are presented. These results demonstrate that higher suction and fluctuating pressure are observed near the upwind corner, particularly for the test case of β=30 deg.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Farzad Mohebbi ◽  
Mathieu Sellier

This paper proposes a novel method to implement the Kutta condition in irrotational, inviscid, incompressible flow (potential flow) over an airfoil. In contrast to common practice, this method is not based on the panel method. It is based on a finite difference scheme formulated on a boundary-fitted grid using an O-type elliptic grid generation technique. The proposed algorithm uses a novel and fast procedure to implement the Kutta condition by calculating the stream function over the airfoil surface through the derived expression for the airfoils with both finite trailing edge angle and cusped trailing edge. The results obtained show the excellent agreement with the results from analytical and panel methods thereby confirming the accuracy and correctness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Ram Bansal ◽  
R. B. Sharma

This work proposes an effective numerical model using the Computational Fluid Dynamics (CFD) to obtain the flow structure around a passenger car with different add-on devices. The computational/numerical model of the passenger car and mesh was constructed using ANSYS Fluent which is the CFD solver and employed in the present work. In this study, numerical iterations are completed, and then aerodynamic data and detailed complicated flow structure are visualized. In the present work, a model of generic passenger car was developed using solidworks, generated the wind tunnel, and applied the boundary conditions in ANSYS workbench platform, and then testing and simulation have been performed for the evaluation of drag coefficient for passenger car. In another case, the aerodynamics of the most suitable design of vortex generator, spoiler, tail plates, and spoiler with VGs are introduced and analysed for the evaluation of drag coefficient for passenger car. The addition of these add-on devices are reduces the drag-coefficient and lift coefficient in head-on wind. Rounding the edges partially reduces drag in head-on wind but does not bring about the significant improvements in the aerodynamic efficiency of the passenger car with add-on devices, and it can be obtained. Hence, the drag force can be reduced by using add-on devices on vehicle and fuel economy, stability of a passenger car can be improved.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Niranjan Sahoo ◽  
P. Ramesh Babu

Force measurement is one of the key issues for design of high speed vehicle configurations. They are routinely tested in impulse facilities where the test duration is in the order of few milliseconds. Since, the experiments are performed in short test times, it is expected that the model never achieves the steady state. So, the measurement diagnostics must account this fact while inferring the forces from the measured parameters. One of the methods is the determination of characteristics system response function by including the dynamics of the system. The aim of this work is to develop a calibration experimental setup and measure axial force on generic aerodynamic body configurations during a short time (~0.6 ms). A generic aerodynamic model attached to a “stress bar” is suspended freely and an impulse load is applied at the tip of the model. An accelerometer fitted with the model records the signal corresponding to the motion of the model. Then, the system characteristics function (impulse response function) is obtained from input force history and output accelerometer signal and further used to predict any unknown forces of similar nature. The recovered forces are compared well with the applied ones with a reasonable accuracy of ±5%.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jonathan Kweder ◽  
Cale H. Zeune ◽  
Jon Geiger ◽  
Andrew D. Lowery ◽  
James E. Smith

The purpose of circulation control for fixed wing aircrafts is to increase the lifting force when large lifting forces and/or slow speeds are required, such as at takeoff and landing. Wing flaps and slats are used on almost all fixed-wing aircraft. While effective in increasing lift, they do so with penalty of increasing drag, weight, and control complexity. The goal of this research was to find an alternative way of pumping pressurized air to the trailing edge slot on a UAV propeller. This design called for rerouting stagnation pressure from the frontal propeller area through the inside of the propeller blades to ejection slots on the trailing edge. This allows for the forward velocity of the aircraft to drive the pressurization of the circulation control plenum passively, without additional hardware. For this study, a Clark-Y airfoil section propeller with an overall diameter of 0.609 meters was designed and tested. The comparison of the augmented to unaugmented propeller showed a 5.12 percent increase in efficiency, which is shown to act over the entire range of flight envelopes of the aircraft and is shown to be particularly beneficial at advance ratios above 0.30, normal operating conditions of propeller-driven UAVs.


Sign in / Sign up

Export Citation Format

Share Document