scholarly journals Affordable Biocidal Ultraviolet Cured Cuprous Oxide Filled Vat Photopolymerization Resin Nanocomposites with Enhanced Mechanical Properties

Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 12
Author(s):  
Markos Petousis ◽  
Nectarios Vidakis ◽  
Emmanuel Velidakis ◽  
John D. Kechagias ◽  
Constantine N. David ◽  
...  

In this study, Cuprous Oxide (Cu2O), known for its mechanism against bacteria, was used as filler to induce biocidal properties on a common commercial resin stereolithography (SLA) 3D printing resin. The aim was to develop nanocomposites suitable for the SLA process with a low-cost process that mimic host defense peptides (HDPs). Such materials have a huge economic and societal influence on the global technological war on illness and exploiting 3D printing characteristics is an additional asset for these materials. Their mechanical performance was also investigated with tensile, flexural, Charpy’s impact, and Vickers microhardness tests. Morphological analysis was performed through scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy-dispersive X-ray spectroscopy (EDS) analysis, while the thermal behavior was studied through Thermogravimetric Analysis (TGA). The antibacterial activity of the fabricated nanocomposites was investigated using a screening agar well diffusion method, for a gram-negative and a gram-positive bacterium. Three-dimensional printed nanocomposites exhibited antibacterial performance in all loadings studied, while their mechanical enhancement was approximately 20% even at low filler loadings, revealing a multi-functional performance and a potential of Cuprous Oxide implementation in SLA resin matrices for engineering and medical applications.

Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 8
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Emmanuel Velidakis ◽  
Nikolaos Mountakis ◽  
Dimitris Tsikritzis ◽  
...  

Metals, such as silver, gold, and copper are known for their biocidal properties, mimicking the host defense peptides (HDPs) of the immune system. Developing materials with such properties has great importance in medicine, especially when combined with 3D printing technology, which is an additional asset for various applications. In this work, copper nanoparticles were used as filler in stereolithography (SLA) ultraviolet (UV) cured commercial resin to induce such biocidal properties in the material. The nanocomposites developed featured enhanced mechanical responses when compared with the neat material. The prepared nanocomposites were employed to manufacture specimens with the SLA process, to be tested for their mechanical response according to international standards. The process followed was evaluated with Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The antibacterial activity of the fabricated nanocomposites was evaluated using the agar-well diffusion method. Results showed enhanced mechanical performance of approximately 33.7% in the tensile tests for the nanocomposites filled with 1.0 wt.%. ratios, when compared to the neat matrix material, while this loading showed sufficient antibacterial performance when compared to lower filler loadings, providing an added value for the fabrication of effective nanocomposites in medical applications with the SLA process.


2019 ◽  
Vol 8 (6) ◽  
pp. 285 ◽  
Author(s):  
Balletti ◽  
Ballarin

In recent decades, 3D acquisition by laser scanning or digital photogrammetry has become one of the standard methods of documenting cultural heritage, because it permits one to analyze the shape, geometry, and location of any artefact without necessarily coming into contact with it. The recording of three-dimensional metrical data of an asset allows one to preserve and monitor, but also to understand and explain the history and cultural heritage shared. In essence, it constitutes a digital archive of the state of an artefact, which can be used for various purposes, be remodeled, or kept safely stored. With the introduction of 3D printing, digital data can once again take on material form and become physical objects from the corresponding mathematical models in a relatively short time and often at low cost. This possibility has led to a different consideration of the concept of virtual data, no longer necessarily linked to simple visual fruition. The importance of creating high-resolution physical copies has been reassessed in light of different types of events that increasingly threaten the protection of cultural heritage. The aim of this research is to analyze the critical issues in the production process of the replicas, focusing on potential problems in data acquisition and processing and on the accuracy of the resulting 3D printing. The metric precision of the printed model with 3D technology are fundamental for everything concerning geomatics and must be related to the same characteristics of the digital model obtained through the survey analysis.


Author(s):  
Ghazi Qaryouti ◽  
Abdel Rahman Salbad ◽  
Sohaib A. Tamimi ◽  
Anwar Almofleh ◽  
Wael A. Salah ◽  
...  

The three-dimensional (3D) printing technologies represent a revolution in the manufacturing sector due to their unique characteristics. These printers arecapable to increase the productivitywithlower complexity in addition tothe reduction inmaterial waste as well the overall design cost prior large scalemanufacturing.However, the applications of 3D printing technologies for the manufacture of functional components or devices remain an almost unexplored field due to their high complexity. In this paper the development of 3D printing technologies for the manufacture of functional parts and devices for different applications is presented. The use of 3D printing technologies in these applicationsis widelyused in modelingdevices usually involves expensive materials such as ceramics or compounds. The recent advances in the implementation of 3D printing with the use of environmental friendly materialsin addition to the advantages ofhighperformance and flexibility. The design and implementation of relatively low-cost and efficient 3D printer is presented. The developed prototype was successfully operated with satisfactory operated as shown from the printed samples shown.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 936 ◽  
Author(s):  
Robert Brewin ◽  
Thomas Brewin ◽  
Joseph Phillips ◽  
Sophie Rose ◽  
Anas Abdulaziz ◽  
...  

Two expanding areas of science and technology are citizen science and three-dimensional (3D) printing. Citizen science has a proven capability to generate reliable data and contribute to unexpected scientific discovery. It can put science into the hands of the citizens, increasing understanding, promoting environmental stewardship, and leading to the production of large databases for use in environmental monitoring. 3D printing has the potential to create cheap, bespoke scientific instruments that have formerly required dedicated facilities to assemble. It can put instrument manufacturing into the hands of any citizen who has access to a 3D printer. In this paper, we present a simple hand-held device designed to measure the Secchi depth and water colour (Forel Ule scale) of lake, estuarine and nearshore regions. The device is manufactured with marine resistant materials (mostly biodegradable) using a 3D printer and basic workshop tools. It is inexpensive to manufacture, lightweight, easy to use, and accessible to a wide range of users. It builds on a long tradition in optical limnology and oceanography, but is modified for ease of operation in smaller water bodies, and from small watercraft and platforms. We provide detailed instructions on how to build the device and highlight examples of its use for scientific education, citizen science, satellite validation of ocean colour data, and low-cost monitoring of water clarity, colour and temperature.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 985 ◽  
Author(s):  
Lazaros Tzounis ◽  
Petros I. Bangeas ◽  
Aristomenis Exadaktylos ◽  
Markos Petousis ◽  
Nectarios Vidakis

A versatile method is reported for the manufacturing of antimicrobial (AM) surgery equipment utilising fused deposition modelling (FDM), three-dimensional (3D) printing and sonochemistry thin-film deposition technology. A surgical retractor was replicated from a commercial polylactic acid (PLA) thermoplastic filament, while a thin layer of silver (Ag) nanoparticles (NPs) was developed via a simple and scalable sonochemical deposition method. The PLA retractor covered with Ag NPs (PLA@Ag) exhibited vigorous AM properties examined by a reduction in Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) bacteria viability (%) experiments at 30, 60 and 120 min duration of contact (p < 0.05). Scanning electron microscopy (SEM) showed the surface morphology of bare PLA and PLA@Ag retractor, revealing a homogeneous and full surface coverage of Ag NPs. X-Ray diffraction (XRD) analysis indicated the crystallinity of Ag nanocoating. Ultraviolent-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM) highlighted the AgNP plasmonic optical responses and average particle size of 31.08 ± 6.68 nm. TEM images of the PLA@Ag crossection demonstrated the thickness of the deposited Ag nanolayer, as well as an observed tendency of AgNPs to penetrate though the outer surface of PLA. The combination of 3D printing and sonochemistry technology could open new avenues in the manufacturing of low-cost and on-demand antimicrobial surgery equipment.


2017 ◽  
Vol 23 (6) ◽  
pp. 1020-1031 ◽  
Author(s):  
Miguel Fernandez-Vicente ◽  
Ana Escario Chust ◽  
Andres Conejero

Purpose The purpose of this paper is to describe a novel design workflow for the digital fabrication of custom-made orthoses (CMIO). It is intended to provide an easier process for clinical practitioners and orthotic technicians alike. It further functions to reduce the dependency of the operators’ abilities and skills. Design/methodology/approach The technical assessment covers low-cost three-dimensional (3D) scanning, free computer-aided design (CAD) software, and desktop 3D printing and acetone vapour finishing. To analyse its viability, a cost comparison was carried out between the proposed workflow and the traditional CMIO manufacture method. Findings The results show that the proposed workflow is a technically feasible and cost-effective solution to improve upon the traditional process of design and manufacture of custom-made static trapeziometacarpal (TMC) orthoses. Further studies are needed for ensuring a clinically feasible approach and for estimating the efficacy of the method for the recovery process in patients. Social implications The feasibility of the process increases the impact of the study, as the great accessibility to this type of 3D printers makes the digital fabrication method easier to be adopted by operators. Originality/value Although some research has been conducted on digital fabrication of CMIO, few studies have investigated the use of desktop 3D printing in any systematic way. This study provides a first step in the exploration of a new design workflow using low-cost digital fabrication tools combined with non-manual finishing.


2021 ◽  
Vol 18 (1) ◽  
pp. 07-13
Author(s):  
Neha Thakur ◽  
Hari Murthy

Three-dimensional printing (3DP) is a digitally-controlled additive manufacturing technique used for fast prototyping. This paper reviews various 3D printing techniques like Selective Laser Sintering (SLS), Fused Deposition Modeling, (FDM), Semi-solid extrusion (SSE), Stereolithography (SLA), Thermal Inkjet (TIJ) Printing, and Binder jetting 3D Printing along with their application in the field of medicine. Normal medicines are based on the principle of “one-size-fits-all”. This is not true always, it is possible medicine used for curing one patient is giving some side effects to another. To overcome this drawback “3D Printed medicines” are developed. In this paper, 3D printed medicines forming different Active Pharmaceutical Ingredients (API) are reviewed. Printed medicines are capable of only curing the diseases, not for the diagnosis. Nanomedicines have “theranostic” ability which combines therapeutic and diagnostic. Nanoparticles are used as the drug delivery system (DDS) to damaged cells’ specific locations. By the use of nanomedicine, the fast recovery of the disease is possible. The plant-based nanoparticles are used with herbal medicines which give low-cost and less toxic medication called nanobiomedicine. 4D and 5D printing technology for the medical field are also enlightened in this paper.


2019 ◽  
Vol 16 (161) ◽  
pp. 20190674 ◽  
Author(s):  
Nuria Melisa Morales-García ◽  
Thomas D. Burgess ◽  
Jennifer J. Hill ◽  
Pamela G. Gill ◽  
Emily J. Rayfield

Finite-element (FE) analysis has been used in palaeobiology to assess the mechanical performance of the jaw. It uses two types of models: tomography-based three-dimensional (3D) models (very accurate, not always accessible) and two-dimensional (2D) models (quick and easy to build, good for broad-scale studies, cannot obtain absolute stress and strain values). Here, we introduce extruded FE models, which provide fairly accurate mechanical performance results, while remaining low-cost, quick and easy to build. These are simplified 3D models built from lateral outlines of a relatively flat jaw and extruded to its average width. There are two types: extruded (flat mediolaterally) and enhanced extruded (accounts for width differences in the ascending ramus). Here, we compare mechanical performance values resulting from four types of FE models (i.e. tomography-based 3D, extruded, enhanced extruded and 2D) in Morganucodon and Kuehneotherium . In terms of absolute values, both types of extruded model perform well in comparison to the tomography-based 3D models, but enhanced extruded models perform better. In terms of overall patterns, all models produce similar results. Extruded FE models constitute a viable alternative to the use of tomography-based 3D models, particularly in relatively flat bones.


Author(s):  
Xiangyu You ◽  
Chengcong Ye ◽  
Ping Guo

Three-dimensional (3D) printing of microscale structures with high resolution (sub-micron) and low cost is still a challenging work for the existing 3D printing techniques. Here we report a direct writing process via near-field melt electrospinning to achieve microscale printing of single filament wall structures. The process allows continuous direct writing due to the linear and stable jet trajectory in the electric near-field. The layer-by-later stacking of fibers, or self-assembly effect, is attributed to the attraction force from the molten deposited fibers and accumulated negative charges. We demonstrated successful printing of various 3D thin wall structures (freestanding single walls, double walls, annular walls, star-shaped structures, and curved wall structures) with a minimal wall thickness less than 5 μm. By optimizing the process parameters of near-field melt electrospinning (electric field strength, collector moving speed, and needle-to-collector distance), ultrafine poly (ε-caprolactone) (PCL) fibers have been stably generated and precisely stacked and fused into 3D thin-wall structures with an aspect ratio of more than 60. It is envisioned that the near-field melt electrospinning can be transformed into a viable high-resolution and low-cost microscale 3D printing technology.


Author(s):  
Torstein Yddal ◽  
Sandy Cochran ◽  
Odd Helge Gilja ◽  
Michiel Postema ◽  
Spiros Kotopoulis

AbstractStudying the effects of ultrasound on biological cells requires extensive knowledge of both the physical ultrasound and cellular biology. Translating knowledge between these fields can be complicated and time consuming. With the vast range of ultrasonic equipment available, nearly every research group uses different or unique devices. Hence, recreating the experimental conditions and results may be expensive or difficult. For this reason, we have developed devices to combat the common problems seen in state-of-the-art biomedical ultrasound research. In this paper, we present the design, fabrication, and characterisation of an open-source device that is easy to manufacture, allows for parallel sample sonication, and is highly reproducible, with complete acoustic calibration. This device is designed to act as a template for sample sonication experiments. We demonstrate the fabrication technique for devices designed to sonicate 24-well plates and OptiCell™ using three-dimensional (3D) printing and low-cost consumables. We increased the pressure output by electrical impedance matching of the transducers using transmission line transformers, resulting in an increase by a factor of 3.15. The devices cost approximately €220 in consumables, with a major portion attributed to the 3D printing, and can be fabricated in approximately 8 working hours. Our results show that, if our protocol is followed, the mean acoustic output between devices has a variance of <1%. We openly provide the 3D files and operation software allowing any laboratory to fabricate and use these devices at minimal cost and without substantial prior know-how.


Sign in / Sign up

Export Citation Format

Share Document