Low to High Speed Transient Structural and Thermal Temperature Measurement of Oil-Lubricated Multi-Speed Heavy Vehicle Transmission Gearbox System Based on FEA

Author(s):  
Ashwani Kumar

The main objective of this chapter is dynamic structural and thermal analysis of multi speed transmission gearbox (medium duty truck) using Finite Element Analysis (FEA). To evaluate the dynamic strength of transmission gearbox assembly transient structural analysis was performed. Dynamic varying loads at different rotational speed were applied to perform the transient analysis. In gear meshing operation at high rotational speed and loading condition, frictional heat is generated inside gearbox assembly. To reduce the effect of frictional heat, gear oil is used. In this research study gear oil SAE 85W140 was used for cooling and performance enhancement. Steady state thermal analysis was performed to evaluate the thermal effect of frictional heat, rotational speed of shafts (pinion, gear) and load with gear oil lubrication. In thermal effect gearbox surface temperature was measured at different points. FEA simulation results have been validated using experimental results available in literature.

Author(s):  
H Long ◽  
A A Lord ◽  
D T Gethin ◽  
B J Roylance

This paper investigates the effects of gear geometry, rotational speed and applied load, as well as lubrication conditions on surface temperature of high-speed gear teeth. The analytical approach and procedure for estimating frictional heat flux and heat transfer coefficients of gear teeth in high-speed operational conditions was developed and accounts for the effect of oil mist as a cooling medium. Numerical simulations of tooth temperature based on finite element analysis were established to investigate temperature distributions and variations over a range of applied load and rotational speed, which compared well with experimental measurements. A sensitivity analysis of surface temperature to gear configuration, frictional heat flux, heat transfer coefficients, and oil and ambient temperatures was conducted and the major parameters influencing surface temperature were evaluated.


2016 ◽  
Vol 13 (5) ◽  
pp. 441-446 ◽  
Author(s):  
Mahyuzie Jenal ◽  
Erwan Sulaiman ◽  
Hassan Ali Soomro ◽  
Syed Muhammad Naufal Syed Othman

Purpose The purpose of this paper is to address a fundamental study and performance analysis of a proposed 6Slots-10Poles permanent magnet flux switching machine (PMFSM) using straight rotor (StR) and 6Slots-8Poles PMFSM with spanned rotor (SpR) structure. Design/methodology/approach Design configuration of the proposed machine was developed using commercial finite element analysis package and JMAG-Designer V.14 software, which provides two-dimensional finite element solver throughout the investigation. An electromagnetic performance analysis is carried out and compared over the two proposed topologies which consist of machines no-load and under-load conditions. Findings This paper demonstrates the finding of the proposed StR structure which consist of more favorable three-phase sinusoidal feature, lower cogging torque and higher output torque. Flux density attributes reveal higher established magnetizing flux concentration in StR compared with SpR. Consequently, the StR structure requires low armature current before it may start to rotate and provides better robust construction with less material consumption and cost. Originality/value This paper describes the novel design of a new PMFSM configuration pertinent for high-speed applications.


Nanophotonics ◽  
2020 ◽  
Vol 9 (15) ◽  
pp. 4579-4588
Author(s):  
Chenghao Feng ◽  
Zhoufeng Ying ◽  
Zheng Zhao ◽  
Jiaqi Gu ◽  
David Z. Pan ◽  
...  

AbstractIntegrated photonics offers attractive solutions for realizing combinational logic for high-performance computing. The integrated photonic chips can be further optimized using multiplexing techniques such as wavelength-division multiplexing (WDM). In this paper, we propose a WDM-based electronic–photonic switching network (EPSN) to realize the functions of the binary decoder and the multiplexer, which are fundamental elements in microprocessors for data transportation and processing. We experimentally demonstrate its practicality by implementing a 3–8 (three inputs, eight outputs) switching network operating at 20 Gb/s. Detailed performance analysis and performance enhancement techniques are also given in this paper.


Author(s):  
Aron Wing ◽  
Tony Liu ◽  
Anthony Palazotto

The purpose of this work is to analyze the heat transfer characteristics of Vascomax®C300 during high-speed sliding. This work extends previous research that is intended to help predict the wear-rate of connecting shoes for a hypersonic rail system at Holloman Air Force Base to prevent critical failure of the system. Solutions were generated using finite element analysis and spectral methods. The frictional heat generated by the pin-on-disk is assumed to flow uniformly and normal to the face of the pin and the pin is assumed to be a perfect cylinder resulting in two-dimensional heat flow. Displacement data obtained from the experiment is used to define the moving boundary. The distribution of temperature resulting from transient finite element analysis is used to justify a one-dimensional model. Spectral methods are then employed to calculate the spatial derivatives improving the approximation of the function which represents the data. It is concluded that a one-dimensional approach with constant heat transfer parameters sufficiently models the high-speed pin-on-disk experiment.


2007 ◽  
Vol 10-12 ◽  
pp. 348-352
Author(s):  
Bin Jiang ◽  
Min Li Zheng ◽  
H.Z. Ma ◽  
Yu Juan Huang

This study investigated the model and simulation of dynamic cutting forces for high speed end mills, performed frequency spectrum analysis of dynamic cutting forces, and propounded the model and failure criterion of high speed end mills with indexable inserts. According to results of modal analysis and stress field analysis, the safety prediction and experiment of high speed end mills for machining aluminum alloy were done. Results indicate that more teeth of cutter and greater cutting contact angle make the energy more dispersible, higher cutting speed and greater rake of cutter can depress dynamic cutting forces. The rigidity failure rotational speed is higher the strength failure rotational speed, the connection strength between cutter body and screw bolt affects directly the safety of cutter. The model of high speed end mills based on spectrum simulation for dynamic cutting forces, and the safety prediction based on finite element analysis should be applied to the development of high speed end mills as an effective means.


2014 ◽  
Vol 556-562 ◽  
pp. 1170-1173 ◽  
Author(s):  
Dong Man Yu ◽  
Yan Hui Hu ◽  
Di Wang ◽  
Xiao Jing Li

High-speed motorized spindle is a key device of modern industry and has been widely used in numerical control machine. Temperature distribution, speed control loading characteristics, precision maintenance, liberation intensity and circumgyration error are not only the key demand of motorized spindle's capability but also an important index to evaluate it's performance. Therefore, this study has detailed described the main structure of motorized spindle. The basic structure and working principal was introduced, and then demonstrated a series of models and specifications of motorized spindle. The finite element model of high-speed motorized spindle was built up and carried out thermal analysis to study the heat generation and heat transfer. With the help of ANSYS finite element software, the temperature field distribution and the temperature rise condition for motorized spindle were analyzed. The result shows that the front bearing has a higher temperature than that of back bearing. The maximum temperature of inner ring is bigger than that of outer ring. The results contribute to selection of appropriate bearing for motorized spindle system.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 959-967
Author(s):  
Se-Yeong Kim ◽  
Tae-Woo Lee ◽  
Yon-Do Chun ◽  
Do-Kwan Hong

In this study, we propose a non-contact 80 kW, 60,000 rpm coaxial magnetic gear (CMG) model for high speed and high power applications. Two models with the same power but different radial and axial sizes were optimized using response surface methodology. Both models employed a Halbach array to increase torque. Also, an edge fillet was applied to the radial magnetized permanent magnet to reduce torque ripple, and an axial gap was applied to the permanent magnet with a radial gap to reduce eddy current loss. The models were analyzed using 2-D and 3-D finite element analysis. The torque, torque ripple and eddy current loss were compared in both models according to the materials used, including Sm2Co17, NdFeBs (N42SH, N48SH). Also, the structural stability of the pole piece structure was investigated by forced vibration analysis. Critical speed results from rotordynamics analysis are also presented.


Sign in / Sign up

Export Citation Format

Share Document