Effects of Mobile Species

Author(s):  
Marie-Louise Saboungi ◽  
David L. Price
Keyword(s):  
2021 ◽  
Vol 168 (2) ◽  
Author(s):  
Alice E. Hall ◽  
Roger J. H. Herbert ◽  
Richard Stafford

AbstractCoastal habitats are important for commercially exploited and protected species of fish and larger mobile invertebrates. The addition of artificial structures within the marine environment has the potential to alter the connectivity between habitats and to affect metapopulations of a region. Baited remote underwater videos (BRUV) were used to investigate the spatial and seasonal variation in abundance of adult and juvenile mobile species associated with subtidal natural and artificial habitats within Poole Bay on the south coast of England in 2019. Metrics included the relative maximum abundance (MaxN), number of species seen (S), assemblage structure and size range of fish. Higher values of MaxN and S were recorded on artificial structures in the spring and early summer; however, this pattern was reversed by mid-summer and early autumn when more fish were recorded on the natural reefs. Yet overall differences in MaxN and S between habitats were not significant. Differences in assemblage composition between habitats varied monthly, but this was mostly driven by particular sites. Although most fish observed were juveniles, there were some seasonal differences in the size of fish using natural and artificial sites, especially bib (Trisopterus luscus), black bream (Spondyliosoma cantharus), bass (Dicentrarchus labrax) and pollack (Pollachius pollachius). The artificial habitats in this region appeared to be important in certain months, so temporal studies of this type need to be incorporated within surveys, particularly those in proximity to protected areas.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 167
Author(s):  
José Coutinho

This paper presents a theoretical study of the electronic and dynamic properties of silicon vacancies and self-interstitials in 4H–SiC using hybrid density functional methods. Several pending issues, mostly related to the thermal stability of this defect, are addressed. The silicon site vacancy and the carbon-related antisite-vacancy (CAV) pair are interpreted as a unique and bistable defect. It possesses a metastable negative-U neutral state, which “disproportionates” into VSi+ or VSi−, depending on the location of the Fermi level. The vacancy introduces a (−/+) transition, calculated at Ec−1.25 eV, which determines a temperature threshold for the annealing of VSi into CAV in n-type material due to a Fermi level crossing effect. Analysis of a configuration coordinate diagram allows us to conclude that VSi anneals out in two stages—at low temperatures (T≲600 °C) via capture of a mobile species (e.g., self-interstitials) and at higher temperatures (T≳1200 °C) via dissociation into VC and CSi defects. The Si interstitial (Sii) is also a negative-U defect, with metastable q=+1 and q=+3 states. These are the only paramagnetic states of the defect, and maybe that explains why it escaped detection, even in p-type material where the migration barriers are at least 2.7 eV high.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 347
Author(s):  
Wenlin Zhang ◽  
Lingyi Zou

We apply molecular dynamics (MD) simulations to investigate crystal nucleation in incompatible polymer blends under deep supercooling conditions. Simulations of isothermal nucleation are performed for phase-separated blends with different degrees of incompatibility. In weakly segregated blends, slow and incompatible chains in crystallizable polymer domains can significantly hinder the crystal nucleation and growth. When a crystallizable polymer is blended with a more mobile species in interfacial regions, enhanced molecular mobility leads to the fast growth of crystalline order. However, the incubation time remains the same as that in pure samples. By inducing anisotropic alignment near the interfaces of strongly segregated blends, phase separation also promotes crystalline order to grow near interfaces between different polymer domains.


2021 ◽  
Vol 83 (2) ◽  
pp. 241-255
Author(s):  
Julia Baumann

AbstractThe ability to disperse is one of the most important factors influencing the biogeography of species and speciation processes. Highly mobile species have been shown to lack geographic population structures, whereas less mobile species show genetically strongly subdivided populations which are expected to also display at least subtle phenotypic differences. Geometric morphometric methods (GMM) were now used to analyze morphological differences between European populations of a presumed non-phoretic, little mobile mite species in comparison to a highly mobile, phoretic species. The non-phoretic species Scutacarus carinthiacus showed a phenotypic population structure, whereas the phoretic species S. acarorum displayed homogeneity. These different patterns most probably can be explained by different levels of gene flow due to different dispersal abilities of the two species. GMM proved to be a sensitive tool that is especially recommendable for the analysis of (old) museum material and/or specimens in microscopic slides, which are not suitable for molecular genetic analysis.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
T. Parmentier ◽  
R. Claus ◽  
F. De Laender ◽  
D. Bonte

Abstract Background Species interactions may affect spatial dynamics when the movement of one species is determined by the presence of another one. The most direct species-dependence of dispersal is vectored, usually cross-kingdom, movement of immobile parasites, diseases or seeds by mobile animals. Joint movements of species should, however, not be vectored by definition, as even mobile species are predicted to move together when they are tightly connected in symbiont communities. Methods We studied concerted movements in a diverse and heterogeneous community of arthropods (myrmecophiles) associated with red wood ants. We questioned whether joint-movement strategies eventually determine and speed-up community succession. Results We recorded an astonishingly high number of obligate myrmecophiles outside red wood ant nests. They preferentially co-moved with the host ants as the highest densities were found in locations with the highest density of foraging red wood ants, such as along the network of ant trails. These observations suggest that myrmecophiles resort to the host to move away from the nest, and this to a much higher extent than hitherto anticipated. Interestingly, functional groups of symbionts displayed different dispersal kernels, with predatory myrmecophiles moving more frequently and further from the nest than detritivorous myrmecophiles. We discovered that myrmecophile diversity was lower in newly founded nests than in mature red wood ant nests. Most myrmecophiles, however, were able to colonize new nests fast suggesting that the heterogeneity in mobility does not affect community assembly. Conclusions We show that co-movement is not restricted to tight parasitic, or cross-kingdom interactions. Movement in social insect symbiont communities may be heterogeneous and functional group-dependent, but clearly affected by host movement. Ultimately, this co-movement leads to directional movement and allows a fast colonisation of new patches, but not in a predictable way. This study highlights the importance of spatial dynamics of local and regional networks in symbiont metacommunities, of which those of symbionts of social insects are prime examples.


1997 ◽  
Vol 467 ◽  
Author(s):  
C. Godet

ABSTRACTIn hydrogenated amorphous silicon (a-Si:H) films, the increase of the metastable defect density under high-intensity illumination is usually described by an empirical two-parameter stretched-exponential time dependence (characteristic time τSE and dispersion parameter β). In this study, a clearly different (one-parameter) analytic function is obtained from a microscopic model based on the formation of metastable H (MSH) atoms in a-Si:H films. Assuming that MSH atoms are the only mobile species, only three chemical reactions are significant : MSH are produced from doubly hydrogenated (SiH HSi) configurations and trapped either at broken bonds or Si-H bonds, corresponding respectively to light-induced annealing (LIA) and light-induced creation (LIC) of defects. Competition between trapping sites results in a saturation of N(t) at a steady-state value Nss. A one-parameter fit of this analytical function to experimental data is generally good, indicating that the use of a statistical distribution of trap energies is not necessary.


2011 ◽  
Vol 38 (3) ◽  
pp. 221 ◽  
Author(s):  
Tom A. Porteus ◽  
Suzanne M. Richardson ◽  
Jonathan C. Reynolds

Context Sampling methods to estimate animal density require good survey design to ensure assumptions are met and sampling is representative of the survey area. Management decisions are often made based on these estimates. However, without knowledge of true population size it is not possible for wildlife biologists to evaluate how biased the estimates can be if survey design is compromised. Aims Our aims were to use distance sampling to estimate population size for domestic sheep free-ranging within large enclosed areas of hill country and, by comparing estimates against actual numbers, examine how bias and precision are impaired when survey design is compromised. Methods We used both line and point transect sampling to derive estimates of density for sheep on four farms in upland England. In Stage I we used limited effort and different transect types to compromise survey design. In Stage II we increased effort in an attempt to improve on the Stage I estimates. We also examined the influence of a walking observer on sheep behaviour to assess compliance with distance sampling assumptions and to improve the fit of models to the data. Key results Our results show that distance sampling can lead to biased and imprecise density estimates if survey design is poor, particularly when sampling high density and mobile species that respond to observer presence. In Stage I, walked line transects were least biased; point transects were most biased. Increased effort in Stage II reduced the bias in walked line transect estimates. For all estimates, the actual density was within the derived 95% confidence intervals, but some of these spanned a range of over 100 sheep per km2. Conclusions Using a population of known size, we showed that survey design is vitally important in achieving unbiased and precise density estimation using distance sampling. Adequate transect replication reduced the bias considerably within a compromised survey design. Implications Management decisions based on poorly designed surveys must be made with an appropriate understanding of estimate uncertainty. Failure to do this may lead to ineffective management.


Langmuir ◽  
2011 ◽  
Vol 27 (11) ◽  
pp. 6808-6813 ◽  
Author(s):  
Erik Hsiao ◽  
Brandon D. Veres ◽  
Gregory J. Tudryn ◽  
Seong H. Kim

2003 ◽  
Vol 2 (1/2) ◽  
pp. 1-10 ◽  
Author(s):  
Washington Sanchez ◽  
Nikole Hynard ◽  
John Evans ◽  
Graeme George
Keyword(s):  

1993 ◽  
Vol 312 ◽  
Author(s):  
D. D. Vvedensky ◽  
T. Shitarat ◽  
P. Smilauer ◽  
T. Kaneko ◽  
A. Zangwill

AbstractThe application of Monte Carlo simulations to various epitaxial growth methods is examined from the standpoint of incorporating only those kinetics processes that are required to explain experimental data. A basic model for molecular-beam epitaxy (MBE) is first introduced and some of the features that make it suitable for describing atomic-scale processes are pointed out. Extensions of this model for cases where the atomic constituents of the growing surface are delivered in the form of heteroatomic molecules are then considered. The experimental scenarios that is discussed is the homoepitaxy of GaAs(001) using metalorganic molecular-beam epitaxy (MOMBE) with triethylgallium (TEG) and precursors and using MOCVD with trimethylgallium (TMG). For MOMBE, the comparisons between simulations and experiments are based on reflection high-energy electron diffraction intensities, by analogy with comparisons made for MBE, while for metalorganic chemical vapor deposition (MOCVD) the simulations are compared to in situ glancingincidence x-ray scattering measurements. In both of these cases, the inclusion of a second mobile species to represent the precursor together with various rules for the decomposition of this molecule (in terms of rates and local environments) with be shown to provide a useful starting point for explaining the general trends in the experimental data and for further refinements of the model.


Sign in / Sign up

Export Citation Format

Share Document