scholarly journals Sea level driven marsh expansion in a coupled model of marsh erosion and migration

2016 ◽  
Vol 43 (9) ◽  
pp. 4366-4373 ◽  
Author(s):  
Matthew L. Kirwan ◽  
David C. Walters ◽  
William G. Reay ◽  
Joel A. Carr

2021 ◽  
Vol 13 (2) ◽  
pp. 444-486
Author(s):  
Klaus Desmet ◽  
Robert E. Kopp ◽  
Scott A. Kulp ◽  
Dávid Krisztián Nagy ◽  
Michael Oppenheimer ◽  
...  

Sea level rise will cause spatial shifts in economic activity over the next 200 years. Using a spatially disaggregated, dynamic model of the world economy, this paper estimates the consequences of probabilistic projections of local sea level changes. Under an intermediate scenario of greenhouse gas emissions, permanent flooding is projected to reduce global real GDP by 0.19 percent in present value terms. By the year 2200, a projected 1.46 percent of the population will be displaced. Losses in coastal localities are much larger. When ignoring the dynamic response of investment and migration, the loss in real GDP in 2200 increases from 0.11 percent to 4.5 percent. (JEL E23, F01, Q54, Q56)



2020 ◽  
Author(s):  
Sophie Nowicki ◽  
Antony J. Payne ◽  
Heiko Goelzer ◽  
Helene Seroussi ◽  
William H. Lipscomb ◽  
...  

Abstract. Projection of the contribution of ice sheets to sea-level change as part of the Coupled Model Intercomparison Project – phase 6 (CMIP6) takes the form of simulations from coupled ice-sheet-climate models and standalone ice sheet models, overseen by the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). This paper describes the experimental setup for process-based sea-level change projections to be performed with standalone Greenland and Antarctic ice sheet models in the context of ISMIP6. The ISMIP6 protocol relies on a suite of polar atmospheric and oceanic CMIP-based forcing for ice sheet models, in order to explore the uncertainty in projected sea-level change due to future emissions scenarios, CMIP models, ice sheet models, and parameterizations for ice-ocean interactions. We describe here the approach taken for defining the suite of ISMIP6 standalone ice sheet simulations, document the experimental framework and implementation, as well as present an overview of the ISMIP6 forcing to be used by participating ice sheet modeling groups.



2018 ◽  
Vol 6 (1) ◽  
pp. 187-201 ◽  
Author(s):  
Eveline Christien van der Deijl ◽  
Marcel van der Perk ◽  
Hans Middelkoop

Abstract. Many deltas are threatened by accelerated soil subsidence, sea-level rise, increasing river discharge, and sediment starvation. Effective delta restoration and effective river management require a thorough understanding of the mechanisms of sediment deposition, erosion, and their controls. Sediment dynamics has been studied at floodplains and marshes, but little is known about the sediment dynamics and budget of newly created wetlands. Here we take advantage of a recently opened tidal freshwater system to study both the mechanisms and controls of sediment deposition and erosion in newly created wetlands. We quantified both the magnitude and spatial patterns of sedimentation and erosion in a former polder area in which water and sediment have been reintroduced since 2008. Based on terrestrial and bathymetric elevation data, supplemented with field observations of the location and height of cut banks and the thickness of the newly deposited layer of sediment, we determined the sediment budget of the study area for the period 2008–2015. Deposition primarily took place in channels in the central part of the former polder area, whereas channels near the inlet and outlet of the area experienced considerable erosion. In the intertidal area, sand deposition especially takes place at low-lying locations close to the channels. Mud deposition typically occurs further away from the channels, but sediment is in general uniformly distributed over the intertidal area, due to the presence of topographic irregularities and micro-topographic flow paths. Marsh erosion does not significantly contribute to the total sediment budget, because wind wave formation is limited by the length of the fetch. Consecutive measurements of channel bathymetry show a decrease in erosion and deposition rates over time, but the overall results of this study indicate that the area functions as a sediment trap. The total contemporary sediment budget of the study area amounts to 35.7×103 m3 year−1, which corresponds to a net area-averaged deposition rate of 6.1 mm year−1. This is enough to compensate for the actual rates of sea-level rise and soil subsidence in the Netherlands.



2016 ◽  
Vol 16 (11) ◽  
pp. 2373-2389 ◽  
Author(s):  
Joanna Staneva ◽  
Kathrin Wahle ◽  
Wolfgang Koch ◽  
Arno Behrens ◽  
Luciana Fenoglio-Marc ◽  
...  

Abstract. This study addresses the impact of wind, waves, tidal forcing and baroclinicity on the sea level of the German Bight during extreme storm events. The role of wave-induced processes, tides and baroclinicity is quantified, and the results are compared with in situ measurements and satellite data. A coupled high-resolution modelling system is used to simulate wind waves, the water level and the three-dimensional hydrodynamics. The models used are the wave model WAM and the circulation model GETM. The two-way coupling is performed via the OASIS3-MCT coupler. The effects of wind waves on sea level variability are studied, accounting for wave-dependent stress, wave-breaking parameterization and wave-induced effects on vertical mixing. The analyses of the coupled model results reveal a closer match with observations than for the stand-alone circulation model, especially during the extreme storm Xaver in December 2013. The predicted surge of the coupled model is significantly enhanced during extreme storm events when considering wave–current interaction processes. This wave-dependent approach yields a contribution of more than 30 % in some coastal areas during extreme storm events. The contribution of a fully three-dimensional model compared with a two-dimensional barotropic model showed up to 20 % differences in the water level of the coastal areas of the German Bight during Xaver. The improved skill resulting from the new developments justifies further use of the coupled-wave and three-dimensional circulation models in coastal flooding predictions.



1997 ◽  
Vol 25 ◽  
pp. 137-144 ◽  
Author(s):  
Siobhan P. O’Farrell ◽  
John L. McGregor ◽  
Leon D. Rotstayn ◽  
William F. Budd ◽  
Christopher Zweck ◽  
...  

The response of the Antarctic ice sheet to climate change over the next 500 years is calculated using the output of a transient-coupled ocean-atmosphere simulation assuming the atmospheric CO2value increases up to three times present levels. The main effects on the ice sheet on this time-scale include increasing rates of accumulation, minimal surface melting, and basal melting of ice shelves. A semi-Lagrangian transport scheme for moisture was used to improve the model’s ability to represent realistic rates of accumulation under present-day conditions, and thereby increase confidence in the anomalies calculated under a warmer climate. The response of the Antarctic ice sheet to the warming is increased accumulation inland, offset by loss from basal melting from the floating ice, and increased ice flow near the grounding line. The preliminary results of this study show that the change to the ice-sheet balance for the transient-coupled model forcing amounted to a minimal sea-level contribution in the next century, but a net positive sea-level rise of 0.21 m by 500 years. This new result supercedes earlier results that showed the Antarctic ice sheet made a net negative contribution to sea-level rise over the next century. However, the amplitude of the sea-level rise is still dominated In the much larger contributions expected from thermal expansion of the ocean of 0.25 m for 100 years and 1.00 m for 500 years.



PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0152437 ◽  
Author(s):  
Nava M. Tabak ◽  
Magdeline Laba ◽  
Sacha Spector


2015 ◽  
Vol 29 (1) ◽  
pp. 367-379 ◽  
Author(s):  
Parichart Promchote ◽  
S.-Y. Simon Wang ◽  
Paul G. Johnson

Abstract Severe flooding occurred in Thailand during the 2011 summer season, which resulted in more than 800 deaths and affected 13.6 million people. The unprecedented nature of this flood in the Chao Phraya River basin (CPRB) was examined and compared with historical flood years. Climate diagnostics were conducted to understand the meteorological conditions and climate forcing that led to the magnitude and duration of this flood. Neither the monsoon rainfall nor the tropical cyclone frequency anomalies alone was sufficient to cause the 2011 flooding event. Instead, a series of abnormal conditions collectively contributed to the intensity of the 2011 flood: anomalously high rainfall in the premonsoon season, especially during March; record-high soil moisture content throughout the year; elevated sea level height in the Gulf of Thailand, which constrained drainage; and other water management factors. In the context of climate change, the substantially increased premonsoon rainfall in CPRB after 1980 and the continual sea level rise in the river outlet have both played a role. The rainfall increase is associated with a strengthening of the premonsoon northeasterly winds that come from East Asia. Attribution analysis using phase 5 of the Coupled Model Intercomparison Project historical experiments pointed to anthropogenic greenhouse gases as the main external climate forcing leading to the rainfall increase. Together, these findings suggest increasing odds for potential flooding of similar intensity to that of the 2011 flood.



2015 ◽  
Vol 431 ◽  
pp. 217-224 ◽  
Author(s):  
Malte Thoma ◽  
Jürgen Determann ◽  
Klaus Grosfeld ◽  
Sebastian Goeller ◽  
Hartmut H. Hellmer


2013 ◽  
Vol 1 (1) ◽  
pp. 171-185 ◽  
Author(s):  
Kelly Wyett


2020 ◽  
Vol 14 (7) ◽  
pp. 2331-2368 ◽  
Author(s):  
Sophie Nowicki ◽  
Heiko Goelzer ◽  
Hélène Seroussi ◽  
Anthony J. Payne ◽  
William H. Lipscomb ◽  
...  

Abstract. Projection of the contribution of ice sheets to sea level change as part of the Coupled Model Intercomparison Project Phase 6 (CMIP6) takes the form of simulations from coupled ice sheet–climate models and stand-alone ice sheet models, overseen by the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). This paper describes the experimental setup for process-based sea level change projections to be performed with stand-alone Greenland and Antarctic ice sheet models in the context of ISMIP6. The ISMIP6 protocol relies on a suite of polar atmospheric and oceanic CMIP-based forcing for ice sheet models, in order to explore the uncertainty in projected sea level change due to future emissions scenarios, CMIP models, ice sheet models, and parameterizations for ice–ocean interactions. We describe here the approach taken for defining the suite of ISMIP6 stand-alone ice sheet simulations, document the experimental framework and implementation, and present an overview of the ISMIP6 forcing to be used by participating ice sheet modeling groups.



Sign in / Sign up

Export Citation Format

Share Document